cho các đa thức P (x) =-5x^3+3x^2+2x+5
Q(x)= -5x^3+6x^2+2x+5
tính giá trị đa thức P(x)+Q(x) tại x =1/2
tìm x để Q(x)-P(x)= 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(P\left(x\right)=-5x^3+3x^2+2x+5\)
\(Q\left(x\right)=-5x^3+6x^2+x+5\)
b: \(H\left(x\right)=Q\left(x\right)+P\left(x\right)=-10x^3+9x^2+3x+10\)
Khi x=1/2 thì \(H\left(x\right)=-10\cdot\dfrac{1}{8}+\dfrac{9}{4}+\dfrac{3}{2}+10=\dfrac{25}{2}\)
a: \(P\left(x\right)=-5x^3+3x^2+2x+5\)
\(Q\left(x\right)=-5x^3+6x^2+2x+5\)
b: \(H\left(x\right)=P\left(x\right)+Q\left(x\right)=-10x^3+9x^2+4x+10\)
\(H\left(\dfrac{1}{2}\right)=-10\cdot\dfrac{1}{8}+\dfrac{9}{4}+2+10=13\)
c: Q(x)-P(x)=6
\(\Leftrightarrow3x^2=6\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
a: P(x)=6x^4+5x^3-3x^2+5x-10
Q(x)=5x^4+5x^3+2x^2-4x+4
b: P(x)+Q(x)
=6x^4+5x^3-3x^2+5x-10+5x^4+5x^3+2x^2-4x+4
=11x^4+10x^3-x^2+x-6
P(x)-Q(x)
=6x^4+5x^3-3x^2+5x-10-5x^4-5x^3-2x^2+4x-4
=x^4-5x^2+9x-14
a: P(x)=5x^3+3x^2-2x-5
\(Q\left(x\right)=5x^3+2x^2-2x+4\)
b: P(x)-Q(x)=x^2-9
P(x)+Q(x)=10x^3+5x^2-4x-1
c: P(x)-Q(x)=0
=>x^2-9=0
=>x=3; x=-3
d: C=A*B=-7/2x^6y^4
a: \(P\left(x\right)=A\left(x\right)+B\left(x\right)=2x^2-x^3+x^3-x^2-3x+4=x^2-3x+4\)
b: Theo đề, ta có: Q(-1)=0
\(\Leftrightarrow5-5+a^2-a=0\)
=>a(a-1)=0
=>a=0 hoặc a=1
a, \(P\left(x\right)=2x^2-x^3+x^3-x^2+4-3x=x^2-3x+4\)
b, Ta có \(Q\left(-1\right)=5-5+a^2+a=a^2+a=0\)
\(\Leftrightarrow a\left(a+1\right)=0\Leftrightarrow a=0;a=-1\)
e:
Xét ΔABH và ΔACH có
AB=AC
góc BAH=góc CAH
AH chung
=>ΔABH=ΔACH
Xét ΔABC có
AH,BM là trung tuyến
AH cắt BM tại G
=>G là trọng tâm
BH=CH=9cm
=>AH=căn 15^2-9^2=12cm
Xét ΔABC có
H là trung điểm của BC
HK//AC
=>K là trug điểm của AB
=>C,G,K thẳng hàng
d: Xét ΔOAM vuông tại A và ΔOBM vuông tại B có
OM chung
góc AOM=góc BOM
=>ΔOAM=ΔOBM
=>MA=MB
Xét ΔMAH vuông tại A và ΔMBK vuông tại B có
MA=MB
góc AMH=góc BMK
=>ΔMAH=ΔMBK
OA+AH=OH
OB+BK=OK
mà OA=OB và AH=BK
nên OH=OK
=>ΔOHK cân tại O
mà OI là phân giác
nên OI vuông góc HK
b: A(x)=0
=>x-7=0
=>x=7
a, \(P\left(x\right)=15-4x^3+3x^2+2x-x^3-10=-5x^3+3x^2+2x+5\)
\(Q\left(x\right)=5+4x^3+6x^2-5x-9x^3+7x=-5x^3+6x^2+2x+5\)
b, \(P\left(x\right)+Q\left(x\right)=-5x^3+3x^2+2x+5-5x^3+6x^2+2x+5\)
\(=-10x^3+9x^2+4x+10\)Thay x = 1/2 vào ta được :
\(=-\frac{10.1}{8}+\frac{9.1}{4}+\frac{4.1}{2}+10=-\frac{5}{4}+\frac{9}{4}+2+10=1+2+10=13\)
c, \(P\left(x\right)-Q\left(x\right)=-5x^3+3x^2+2x+5+5x^3-6x^2-2x-5=6\)
\(\Leftrightarrow-3x^2=6\Leftrightarrow x^2=-2\)vô lí vì \(x^2\ge0;-2< 0\)
\(P\left(\dfrac{1}{2}\right)+Q\left(\dfrac{1}{2}\right)=-5.\left(\dfrac{1}{2}\right)^3+3\left(\dfrac{1}{2}\right)^2+\dfrac{2}{2}+5-5\left(\dfrac{1}{2}\right)^3+6\left(\dfrac{1}{2}\right)^2+\dfrac{2}{2}+5\)
\(P\left(\dfrac{1}{2}\right)+Q\left(\dfrac{1}{2}\right)=-\dfrac{5.1}{8}+\dfrac{3.1}{4}+6-\dfrac{5.1}{8}+\dfrac{6.1}{4}+6\)
\(P\left(\dfrac{1}{2}\right)+Q\left(\dfrac{1}{2}\right)=-\dfrac{5}{8}+\dfrac{3}{4}+6-\dfrac{5}{8}+\dfrac{3}{2}+6\)
\(P\left(\dfrac{1}{2}\right)+Q\left(\dfrac{1}{2}\right)=13\)
\(Q\left(x\right)-P\left(x\right)=6\)
\(-5x^3+6x^2+2x+5+5x^3-3x^2-2x-5=6\)
\(3x^2=6\)
\(x^2=2\)
\(=>x=\pm\sqrt{2}\)