Cho hình vuông ABCD có AB=a. Gọi M,N lần lượt là 2 điểm tùy ý tren AB,AD sao cho chu vi tam giác AMN=2a. Gọi H là hình chiếu của C trên MN. Chứng minh H luôn thuộc 1 đường tròn cố định khi MN chuyển động trên cạnh AB,AD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=1+3+3^2+3^3+...+3^{2018}\)
=> \(3B=3+3^2+3^3+3^4+...+3^{2019}\)
=> \(2B=3B-B=\left(3+3^2+3^3+3^4+...+3^{2019}\right)-\left(1+3+3^2+3^3+...+3^{2018}\right)\)
=> \(2B=3^{2019}-1\)
=> \(B=\frac{3^{2019}-1}{2}\)
Theo giả thiết ta có M và N là hai điểm di động lần lượt trên hai tia Ax và By sao cho AM + BN = MN.
a) Kéo dài MA một đoạn AP = BN, ta có MP = MN và OP = ON.
Do đó ΔOMP = ΔOMN (c.c.c)
⇒ OA = OH nên OH = a.
Ta suy ra HM = AM và HN = BN.
b) Gọi M’ là hình chiếu vuông góc của điểm M trên mặt phẳng (Bx’, By) ta có:
HK // MM’ với K ∈ NM’.
Do đó đối với tam giác BNM’ đường thẳng BK là phân giác của góc (x'By) .
c) Gọi (β) là mặt phẳng (AB, BK). Vì HK // AB nên HK nằm trong mặt phẳng (β) và do đó H thuộc mặt phẳng (β). Trong mặt phẳng (β) ta có OH = a. Vậy điểm H luôn luôn nằm trên đường tròn cố định, đường kính AB và nằm trong mặt phẳng cố định (β) = (AB, BK)
Tự vẽ hình nha,
Câu a, Ta có : tứ giác AHMK là hình chữ nhật nên MK=AH và HM=AK
Mà HM, MK lần lượt là bán kính của (H) và (M)
Xét tam giác HAK có : theo bđt tam giác : HA-HB<HK<HA+HK
Hay MK-MH<HK<MH+MK => hai đường tròn luôn cắt nhau ( giả sử MK>MH)
Ta có \(\widehat{NMH}=\widehat{NCB};\widehat{NMK}=\widehat{NBC}\)
Do AKMH là hình chữ nhật nên
\(\widehat{NMH}+\widehat{NMK}=90\Rightarrow\widehat{NCB}+\widehat{NBC}=90\)
\(\Rightarrow\widehat{BNC}=90\). Vẽ hình vuông ABEC
Ta có A, N, B, E, C cùng thuộc đường tròn đường kính BC cố định
Ta lại có \(\widehat{NEB}=\widehat{NCB}\)mà \(\widehat{NCB}=\widehat{NMH}\)
\(\widehat{NEB}=\widehat{NMH}\), do \(MH//EB\)nên ba điểm N, M, E thẳng hàng. Vậy MN luôn đi qua điểm E cố định