cho tam giác ABC vuông cân tại A cố định. Điểm M chuyển động trên BC. Đường thẳng qua M và vuông góc vs BC căt các đường BA, CA theo thứ tự D, E. Gọi I là trung điểm của CE, K là trung điểm của BD. Các trung điểm O của IK nằm trên đường nào
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lấy P và Q lần lượt là trung điểm của AB và AC. Nối M với I & K.
Xét \(\Delta\)BMD: ^BMD = 900; ^MBD = 450 => \(\Delta\)BMD vuông cân tại M
Ta thấy I là trung điểm BD => MI vuông góc góc với BD => ^MIA = 900
Tương tự: ^MKA = 900 . Xét tứ giác AIMK có: ^IAK = ^MIA = ^MKA = 900
=> Tứ giác AIMK là hình chữ nhật. Ta có: O là trung điểm của đường chéo IK
=> O là trung điểm AM.
Xét \(\Delta\)BAM: P là trung điểm AB; O là trung điểm AM => OP là đg trung bình \(\Delta\)BAM
=> OP // BM hay OP // BC. Tương tự: OQ // BC => 3 điểm P;O;Q thẳng hàng (Theo tiên đề Ơ-clit)
=> O nằm trên đường trung bình PQ của \(\Delta\)ABC
Vậy khi M chạy trên cạnh BC của \(\Delta\)ABC thì trung điểm O của IK di động trên đg trung bình của \(\Delta\)ABC.
hình như trên
+)Ta có: ( g-c-g) ( Vì cùng bằng )
Nên MD = NE.
+)Xét và :
( Hai góc đối đỉnh)
Nên ( cgv - gn)
+)Từ B và C kẻ các đường thẳng lần lượt vuông
Góc với AB và AC cắt nhau tại J.
Ta có:
Nên J thuộc AL đường trung trực ứng với BC
Mặt khác : Từ ( Câu a)
Ta có : BM = CN
BJ = CJ ( cm trên)
Nên ( c-g-c)
hay đường trung trực của MN
Luôn đi qua điểm J cố định.
(Cái này là mình giải trong trường hợp AM là tia đối của AB nhé)
a) Tam giác ABC cân tại A => ABC= ACB
Mà ACB= ECN(đối đỉnh) => ABC= ECN
Xét tam giác BMD và tam giác CNE có :
BDM=CEN(=900);BD=CE(GT);ABC=ECN(chứng minh trên)
Do đó tam giác BMD=tam giác CNE(g.c.g)=>MD=NE(2 cạnh tương ứng) (đpcm)
b)Vì MDE=CEN(=900)=>MD//EN(Do có 1 cặp góc bằng nhau ở vị trí SLT)
=>DMN=ENM(cặp góc SLT)
Xét tam giác DMI và tam giác ENI có :
DMN=ENM(c/m trên);MD=NE(đã c/m ở câu a);BMD=IEN(=900)
Do đó tam giác DMI= tam giác ENI(g.c.g)=>MI=NI(2 cạnh tương ứng)
Mà I nằm giữa M và N => I là TĐ của MN
Hay BC cắt MN tại TĐ I của MN.
(câu c mk ko bít làm)
:))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))chịu thôi khó mãi thôi chỉ cho câu D là được rồi
Câu c: Chứng minh:
Vẽ AH vuông góc với BC (H thuộc BC), ta có:
- Chứng minh ΔHAB=ΔHACΔHAB=ΔHAC (cạnh huyền - góc nhọn) \Rightarrow ˆHAB=ˆHACHAB^=HAC^ (2 góc tương ứng)
Gọi O là giao điểm của AH với đường vuông góc với MN tại I, ta có:
- Chứng minh ΔABO=ΔACOΔABO=ΔACO (c.g.c) \Rightarrow ˆOBA=ˆOCAOBA^=OCA^ (2 góc tương ứng) (1)
- Chứng minh ΔOIM=ΔOINΔOIM=ΔOIN (c.g.c) \Rightarrow OM=ONOM=ON (2 cạnh tương ứng)
- Chứng minh ΔOBM=ΔOCNΔOBM=ΔOCN (c.c.c) \Rightarrow ˆMBOˆNCOMBO^NCO^ (2 góc tương ứng) (2)
Lại có: N thuộc tia đối AC (gt) nên C thuộc đoạn AN
\Rightarrow ˆACO+ˆOCN=180oACO^+OCN^=180o (2 góc kề bù) (3)
Từ (1), (2) và (3) suy ra: ˆABO=ˆACO=ˆOCN=90oABO^=ACO^=OCN^=90o
\Rightarrow Điểm O cố định vì OB vuông góc với AB tại B và OC vuông góc với AC tại C (hay OB và OC duy nhất)
Vậy: Đường thằng vuông góc MN tại I cắt tại điểm O cố định khi D thay đổi trên BC