Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TL
a) Xét tứ giác AEMD có
ˆEAD=900EAD^=900(ˆBAC=900BAC^=900, E∈AC, D∈AB)
ˆAEM=900AEM^=900(ME⊥AC)
ˆADM=900ADM^=900(MD⊥AB)
Do đó: AEMD là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b)
Ta có: K và M đối xứng nhau qua E(gt)
nên E là trung điểm của KM
Xét ΔAKM có
AE là đường cao ứng với cạnh KM(AE⊥ME, K∈ME)
AE là đường trung tuyến ứng với cạnh KM(E là trung điểm của KM)
Do đó: ΔAKM cân tại A(Định lí tam giác cân)
mà AE là đường trung tuyến ứng với cạnh đáy KM(E là trung điểm của KM)
nên AE là tia phân giác của ˆKAMKAM^(Định lí tam giác cân)
hay ˆKAE=ˆMAEKAE^=MAE^
Ta có: M và P đối xứng nhau qua D(gt)
nên D là trung điểm của MP
Xét ΔAMP có
AD là đường cao ứng với cạnh MP(AD⊥MD, P∈MD)
AD là đường trung tuyến ứng với cạnh MP(D là trung điểm của MP)
Do đó: ΔAMP cân tại A(Định lí tam giác cân)
mà AD là đường trung tuyến ứng với cạnh đáy MP(D là trung điểm của MP)
nên AD là tia phân giác của ˆMAPMAP^(Định lí tam giác cân)
hay ˆPAD=ˆMADPAD^=MAD^
Ta có: tia AM nằm giữa hai tia AE, AD
nên ˆEAM+ˆDAM=ˆEADEAM^+DAM^=EAD^
hay ˆEAM+ˆDAM=900EAM^+DAM^=900
Ta có: ˆKAP=ˆKAE+ˆMAE+ˆMAD+ˆPADKAP^=KAE^+MAE^+MAD^+PAD^
⇔ˆKAP=2⋅(ˆMAE+ˆMAD)⇔KAP^=2⋅(MAE^+MAD^)
⇔ˆKAP=2⋅900=1800⇔KAP^=2⋅900=1800
⇔K,A,P thẳng hàng(1)
Ta có: ΔAKM cân tại A(cmt)
nên AK=AM
Ta có: ΔAMP cân tại A(cmt)
nên AM=AP
mà AK=AM(cmt)
nên AP=AK(2)
Từ (1) và (2) suy ra A là trung điểm của KP
hay P đối xứng với K qua A(đpcm)
HT
Lấy P và Q lần lượt là trung điểm của AB và AC. Nối M với I & K.
Xét \(\Delta\)BMD: ^BMD = 900; ^MBD = 450 => \(\Delta\)BMD vuông cân tại M
Ta thấy I là trung điểm BD => MI vuông góc góc với BD => ^MIA = 900
Tương tự: ^MKA = 900 . Xét tứ giác AIMK có: ^IAK = ^MIA = ^MKA = 900
=> Tứ giác AIMK là hình chữ nhật. Ta có: O là trung điểm của đường chéo IK
=> O là trung điểm AM.
Xét \(\Delta\)BAM: P là trung điểm AB; O là trung điểm AM => OP là đg trung bình \(\Delta\)BAM
=> OP // BM hay OP // BC. Tương tự: OQ // BC => 3 điểm P;O;Q thẳng hàng (Theo tiên đề Ơ-clit)
=> O nằm trên đường trung bình PQ của \(\Delta\)ABC
Vậy khi M chạy trên cạnh BC của \(\Delta\)ABC thì trung điểm O của IK di động trên đg trung bình của \(\Delta\)ABC.