Cho 3 số x,y,z thỏa mãn: x/2020=y/2021=z/2022.Chứng minh rằng: (x-z)^3=8(x-y)^2.(y-z)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+y^2+z^2=xy+yz+zx\\ \Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\\ \Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\Leftrightarrow x=y=z\\ \text{Mà }x+y+z=-3\Leftrightarrow x=y=z=-1\\ \Leftrightarrow B=1-1+1=1\)
Đặt \(\dfrac{x}{2019}=\dfrac{y}{2020}=\dfrac{z}{2021}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=2019k\\y=2020k\\z=2021k\end{matrix}\right.\)
Ta có : \(4.\left(x-y\right).\left(y-z\right)=4.\left(2019k-2020k\right).\left(2020k-2021k\right)=4.\left(-k\right).\left(-k\right)=4k^2\)
Lại có : \(\left(z-x\right)^2=\left(2021k-2019k\right)^2=4k^2\)
Do đó : \(4.\left(x-y\right).\left(y-z\right)=\left(z-x\right)^2\)
Đặt\(\frac{x}{2019}=\frac{y}{2020}=\frac{z}{2021}=k\Rightarrow\hept{\begin{cases}x=2019k\\y=2020k\\z=2021k\end{cases}}\)
Khi đó (x - y)2 = (2019k - 2020k)2 = (-k)2 = k2 (1)
\(\frac{\left(x-z\right)\left(y-z\right)}{2}=\frac{\left(2019k-2021k\right)\left(2020k-2021k\right)}{2}=\frac{\left(-2k\right).\left(-k\right)}{2}=\frac{2k^2}{2}=k^2\)(2)
Từ (1) và (2) => đpcm
(Nó có hơi dài dòng)
Cho 3 số x,y,z thỏa mãn: x/2020=y/2021=z/2022.Chứng minh rằng: (x-z)^3 =
(x-z)^3= (2020 - 2022)^3 = -8
8(x-y)^2.(y-z)= 8(2020 - 2021)^2 . (2021 - 2022) = -8.
Vì (x-z)^3 = -8
8(x-y)^2.(y-z) = -8
==> (x-z)^3 = 8(x-y)^2.(y-z)
Bạn viết ra vở xong chụp mik đc ko