chứng minh rằng: Cos + Sin <= 2*(Cos^3 +Sin^3) biết 0 độ < Cos, sin < 90 độ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tam thoi cho ban dung
<=>(sinx+cosx-1)/(1-cosx+sinx+cosx-1)=(2cosx)/(sinx-cosx+1+2cosx)
<=>(sinx+cosx-1)/sinx=2cosx/(sinx+cosx+1)
x€(0;π/2)=> sinx ≠0; sinx+cosx+1≠0
<=>(sinx+cosx-1)(sinx+cosx+1)=2sinxcosx
<=>(sinx+cosx)^2-1=2sinxcosx
<=>(sin^2x+cos^2+2sinxcos)-1=2sinxcosx
<=>1+2sinxcosx-1=2sinxcosx
<=>2sinxcosx=2sinxcosx
moi bd <=>=> ban dung =>dpcm
ta có : \(0^o< x< 90^o\) \(\Rightarrow sinx-cosx+1>0\) và ta luôn có \(1-cosx>0\) \(\Rightarrow\) biểu thức trên được xác định
\(\Rightarrow\dfrac{sinx+cos-1}{1-cosx}=\dfrac{2cosx}{sinx-cos+1}\)
\(\Leftrightarrow\left(sinx+cosx-1\right)\left(sinx-cosx+1\right)=2cosx\left(1-cosx\right)\)
\(\Leftrightarrow\left(sinx+\left(cosx-1\right)\right)\left(sinx-\left(cosx-1\right)\right)=2cosx\left(1-cosx\right)\)
\(\Leftrightarrow sin^2x-\left(cosx-1\right)^2=2cosx-2cos^2x\)
\(\Leftrightarrow sin^2x-cos^2x+2cosx-1=2cosx-2cos^2x\)
\(\Leftrightarrow sin^2x-cos^2x+2cosx-sin^2x-cos^2x=2cosx-2cos^2x\)\(\Rightarrow2cosx-2cos^2x=2cosx-cos^2x\) \(\Rightarrow\left(đpcm\right)\)
\(\dfrac{sinx+cosx-1}{1-cosx}=\dfrac{2cosx}{sinx-cosx+1}\)
\(\Leftrightarrow sin^2x-\left(cosx-1\right)^2=2cosx\left(1-cosx\right)\)
\(\Leftrightarrow sin^2x-cos^2x+2cosx-1=2cosx-2cos^2x\)
\(\Leftrightarrow sin^2x+cos^2x-1=0\)
\(\Leftrightarrow1-1=0\) đúng
Do \(90< a< 180\Rightarrow cosa< 0\Rightarrow tana< 0\Rightarrow\) đề bài sai do tana không thể bằng 3
Nhưng kệ cứ tính thì:
Chia cả tử và mẫu của A cho \(cos^3a\) và lưu ý \(\frac{1}{cos^2a}=1+tan^2a\)
\(A=\frac{tana.\frac{1}{cos^2a}+tan^2a+1}{tan^3a-tana-1}=\frac{tana\left(1+tan^2a\right)+tan^2a+1}{tan^3a-tana-1}\)
Tới đây thay số vào và bấm máy là xong