\(0\)ĐỘ\(< \)\(\alpha1< \al...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2017

CHỈ CÓ CÔNG THỨC :\(\cos\left(\beta-\alpha\right)=\cos\beta\cos\alpha+\sin\beta\sin\alpha\)

viết cái đề mà cũng không đúng thì người khác trả lời làm sao hiểu nổioe

14 tháng 3 2017

bạn có thấy bạn viết hơi bị loạn không?

Đã người khác trả lời rồi lại còn làm sao hiểu nổi?

Ý bạn là người khác trả lời ko hiểu hay người ra đề ko hiểu?

Mà cũng kì thật người khác trả lời rồi mà người ta còn không hiểu là sao?

24 tháng 8 2020

\(\Delta\)ABC vuông tại A có AB<AC. 

25 tháng 8 2020

A B C M H

Kẻ đường cao AH ; Vì AB < AC => BH < HC=> H thuộc BM 

Ta có: \(\sin\alpha=\frac{AB}{BC};\cos\alpha=\frac{AC}{BC};\sin\beta=\frac{AH}{AM}\)

=> \(\left(\sin\alpha+\cos\alpha\right)^2=\left(\frac{AB}{BC}+\frac{AC}{BC}\right)^2=\frac{AB^2}{BC^2}+\frac{AC^2}{BC^2}+\frac{2AB.AC}{BC^2}=1+\frac{2AB.AC}{BC^2}\)

Mà theo hệ thức lượng: \(AB^2=BC.BH;AC^2=CB.CH\)

=> \(\frac{2AB.AC}{BC^2}=2.\frac{AB}{BC}.\frac{AC}{BC}=\frac{2BH.CH}{AB.AC}=\frac{2AH^2}{AB.AC}\)

Ta cần chứng minh: \(\frac{2AH^2}{AB.AC}=\frac{AH}{AM}\Leftrightarrow2AH.AM=AB.AC\Leftrightarrow AH.BC=AB.AC\)đúng 

Vậy \(1+\frac{2AB.AC}{BC^2}=1+\frac{AH}{AM}\)

=> Có điều cần phải cm