K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=\dfrac{1}{5}x^3y\cdot x^2y^6=\dfrac{1}{5}x^5y^7\)

13 tháng 5 2022

\(=\dfrac{1}{5}.\left(x^3x^2\right)\left(yy^{3.2}\right)=\dfrac{1}{5}x^5y^7\)

Giải hệ phương trình: 1. \(\left\{{}\begin{matrix}x+3=2\sqrt{\left(3y-x\right)\left(y+1\right)}\\\sqrt{3y-2}-\sqrt{\dfrac{x+5}{2}}=xy-2y-2\end{matrix}\right.\) 2. \(\left\{{}\begin{matrix}\sqrt{2y^2-7y+10-x\left(y+3\right)}+\sqrt{y+1}=x+1\\\sqrt{y+1}+\dfrac{3}{x+1}=x+2y\end{matrix}\right.\) 3. \(\left\{{}\begin{matrix}\sqrt{4x-y}-\sqrt{3y-4x}=1\\2\sqrt{3y-4x}+y\left(5x-y\right)=x\left(4x+y\right)-1\end{matrix}\right.\) 4....
Đọc tiếp

Giải hệ phương trình:

1. \(\left\{{}\begin{matrix}x+3=2\sqrt{\left(3y-x\right)\left(y+1\right)}\\\sqrt{3y-2}-\sqrt{\dfrac{x+5}{2}}=xy-2y-2\end{matrix}\right.\)

2. \(\left\{{}\begin{matrix}\sqrt{2y^2-7y+10-x\left(y+3\right)}+\sqrt{y+1}=x+1\\\sqrt{y+1}+\dfrac{3}{x+1}=x+2y\end{matrix}\right.\)

3. \(\left\{{}\begin{matrix}\sqrt{4x-y}-\sqrt{3y-4x}=1\\2\sqrt{3y-4x}+y\left(5x-y\right)=x\left(4x+y\right)-1\end{matrix}\right.\)

4. \(\left\{{}\begin{matrix}9\sqrt{\dfrac{41}{2}\left(x^2+\dfrac{1}{2x+y}\right)}=3+40x\\x^2+5xy+6y=4y^2+9x+9\end{matrix}\right.\)

5. \(\left\{{}\begin{matrix}\sqrt{xy+\left(x-y\right)\left(\sqrt{xy}-2\right)}+\sqrt{x}=y+\sqrt{y}\\\left(x+1\right)\left[y+\sqrt{xy}+x\left(1-x\right)\right]=4\end{matrix}\right.\)

6. \(\left\{{}\begin{matrix}x^4-x^3+3x^2-4y-1=0\\\sqrt{\dfrac{x^2+4y^2}{2}}+\sqrt{\dfrac{x^2+2xy+4y^2}{3}}=x+2y\end{matrix}\right.\)

7. \(\left\{{}\begin{matrix}x^3-12z^2+48z-64=0\\y^3-12x^2+48x-64=0\\z^3-12y^2+48y-64=0\end{matrix}\right.\)

0
19 tháng 11 2021

\(ĐK:x\ne y;x\ne-y;x^2+xy+y^2\ne0;x^2-xy+y^2\ne0\)

\(A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\left[1:\dfrac{\left(x^3+y^3\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2+y^2\right)}\right]\\ A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+xy+y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)\left(x^2+y^2\right)}\\ A=x-y=B\)

\(x=0;y=0\Leftrightarrow B=0\)

Giá trị của A không xác định vì \(x=y\) trái với ĐK:\(x\ne y\)

Vậy \(A\ne B\)

2: Thay \(x=\dfrac{1}{2}\) và y=2 vào M, ta được:

\(M=\dfrac{2\cdot\left(\dfrac{1}{2}\right)^2\cdot2-1.2\cdot\left(3\cdot\dfrac{1}{2}-2\cdot2\right)}{\dfrac{1}{2}\cdot2}\)

\(=4\cdot\dfrac{1}{4}-1.2\left(\dfrac{3}{2}-4\right)\)

\(=1-1.8+4.8\)

\(=4\)

1: Ta có: \(\left(-\dfrac{2}{3}x^3y^2\right)z\cdot5xy^2z^2\)

\(=\left(-\dfrac{2}{3}\cdot5\right)\cdot\left(x^3\cdot x\right)\cdot\left(y^2\cdot y^2\right)\cdot\left(z\cdot z^2\right)\)

\(=\dfrac{-10}{3}x^4y^4z^3\)

17 tháng 10 2017

Bài 45: (SBT/12):

a. (5x4 - 3x3 + x2) : 3x2

= (5x4 : 3x2) + (-3x3 : 3x2) + (x2 : 3x2)

=\(\dfrac{5}{2}\)x2 - x + \(\dfrac{1}{3}\)

b. (5xy2 + 9xy - x2y2) : (-xy)

= [5xy2 : (-xy)] + [9xy : (-xy)] + [(-x2y2) : (-xy)]

= -5y - 9 + xy

c. (x3y3 : \(\dfrac{1}{3}\)x2y3 - x3y2) : \(\dfrac{1}{3}\)x2y2

= (x3y3 : \(\dfrac{1}{3}\)x2y2) + (-\(\dfrac{1}{2}\)x2y3 : \(\dfrac{1}{3}\)x2y2) + (-x3y2 : \(\dfrac{1}{3}\)x2y2)

= 3xy - \(\dfrac{3}{2}\)y - 3x

a: \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+2\right)\left(y+3\right)-xy=100\\xy-\left(x-2\right)\left(y-2\right)=64\end{matrix}\right.\)

=>xy+3x+2y+6-xy=100 và xy-xy+2x+2y-4=64

=>3x+2y=94 và 2x+2y=68

=>x=26 và x+y=34

=>x=26 và y=8

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3x+3+2}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x+2-2}{x+1}-\dfrac{5y+20-11}{y+4}=9\end{matrix}\right.\)

=>\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x+1}-\dfrac{2}{y+4}=4-3=1\\\dfrac{-2}{x+1}+\dfrac{11}{y+4}=9+5-2=12\end{matrix}\right.\)

=>x+1=18/35; y+4=9/13

=>x=-17/35; y=-43/18

25 tháng 7 2021

a, mình nghĩ đề là cm đẳng thức nhé 

\(VT=\left(5x^4-3x^3+x^2\right):3x^2=\frac{5x^4}{3x^2}-\frac{3x^3}{3x^2}+\frac{x^2}{3x^2}=\frac{5}{3}x^2-x+\frac{1}{3}=VP\)

Vậy ta có đpcm 

b, \(VT=\left(5xy^2+9xy-x^2y^2\right):\left(-xy\right)=\frac{5xy^2}{-xy}+\frac{9xy}{-xy}-\frac{x^2y^2}{-xy}\)

\(=-5y-9+xy=VP\)

Vậy ta có đpcm 

c, \(VT=\left(x^3y^3-x^2y^3-x^3y^2\right):x^2y^2=\frac{x^3y^3}{x^2y^2}-\frac{x^2y^3}{x^2y^2}-\frac{x^3y^2}{x^2y^2}=xy-y-x=VP\)

Vậy ta có đpcm 

NV
23 tháng 7 2021

a.

\(\left\{{}\begin{matrix}\left(x-1\right)^2-\left(y+1\right)^2=0\\x+3y-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1-y-1\right)\left(x-1+y+1\right)=0\\x+3y-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y-2\right)\left(x+y\right)=0\\x+3y-5=0\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x-y-2=0\\x+3y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{4}\\y=\dfrac{3}{4}\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}x+y=0\\x+3y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=\dfrac{5}{2}\end{matrix}\right.\)

NV
23 tháng 7 2021

b.

\(\left\{{}\begin{matrix}xy-2x-y+2=0\\3x+y=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(y-2\right)-\left(y-2\right)=0\\3x+y=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(y-2\right)=0\\3x+y=8\end{matrix}\right.\)

TH1:

\(\left\{{}\begin{matrix}x-1=0\\3x+y=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)

TH2:

\(\left\{{}\begin{matrix}y-2=0\\3x+y=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)

a: \(5x^2y^4:10x^2y=\dfrac{1}{2}y^3\)

c: \(\left(-xy\right)^{10}:\left(-xy\right)^5=-x^5y^5\)

HQ
Hà Quang Minh
Giáo viên
12 tháng 1 2024

\(\left( {3{x^2} - 5xy - 4{y^2}} \right).\left( {2{x^2} + {y^2}} \right) + \left( {2{x^4}y^2 + {x^3}{y^3} + {x^2}{y^4}} \right):\left( {\dfrac{1}{5}xy} \right)\\\)

\(= 3{x^2}.2{x^2} + 3{x^2}.{y^2} - 5xy.2{x^2} - 5xy.{y^2} - 4{y^2}.2{x^2} - 4{y^2}.{y^2} + 2{x^4}y^2:\left( {\dfrac{1}{5}xy} \right) + {x^3}{y^3}:\left( {\dfrac{1}{5}xy} \right) + {x^2}{y^4}:\left( {\dfrac{1}{5}xy} \right)\\\)

\(= 6{x^4} + 3{x^2}{y^2} - 10{x^3}y - 5x{y^3} - 8{x^2}{y^2} - 4{y^4} + 10{x^3}y + 5{x^2}{y^2} + 5x{y^3}\\\)

\(= 6{x^4} - 4{y^4}+ ( - 10{x^3}y + 10{x^3}y) + \left( { - 5x{y^3} + 5x{y^3}} \right) + \left( {3{x^2}{y^2} - 8{x^2}{y^2} + 5{x^2}{y^2}} \right)\\\)

\(= 6{x^4} - 4{y^4}\)