Cho Cho tam giác abc có 3 góc nhọn . Chứng minh CosA . CosB . CosC ≤\(\frac{1}{8}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC nhọn có \(BC^2=AB^2+AC^2-2AB\cdot AC\cdot\cos\widehat{A}\)
\(\Rightarrow\cos\widehat{A}=\dfrac{AB^2+AC^2-BC^2}{2AB\cdot AC}=\dfrac{AB^2+AC^2-BC^2}{4\cdot\dfrac{1}{2}AB\cdot AC}=\dfrac{AB^2+AC^2-BC^2}{4S_{ABC}}\)
Cmtt: \(\left\{{}\begin{matrix}\cos\widehat{B}=\dfrac{AB^2+BC^2-AC^2}{4S_{ABC}}\\\cos\widehat{C}=\dfrac{AC^2+BC^2-AB^2}{4S_{ABC}}\end{matrix}\right.\)
\(\Rightarrow\cos\widehat{A}+\cos\widehat{B}+\cos\widehat{C}\\
=\dfrac{AB^2+AC^2-BC^2+AB^2+BC^2-AC^2+AC^2+BC^2-AB^2}{4S_{ABC}}\\
=\dfrac{AB^2+AC^2+BC62}{4S_{ABC}}\)
Ta chứng minh chiều nghịch:
Khi tam giác ABC đều, góc A=gócB=gócC=60*
Khi đó cosA+cosB+cosC=3/2(đpcm)
Ta chứng minh chiều thuận
Ta chứng minh cosA+cosB+cosC≤3/2
Thật vậy:
Mà theo gt, cosA+cosB+cosC=3/2
nên ta có tam giác ABC đều(đpcm)
A B C D E F
vẽ AD,BE, CF là các đường cao của tam giác ABC
\(\cos A=\sqrt{\cos BAE\cdot\cos CAF}=\sqrt{\frac{AE}{AB}\cdot\frac{AE}{AC}}=\sqrt{\frac{AF}{AB}\cdot\frac{AE}{AC}}\le\frac{1}{2}\left(\frac{AF}{AB}+\frac{AE}{AC}\right)\)
ta có \(\cos A\le\frac{1}{2}\left(\frac{AF}{AB}+\frac{AE}{AC}\right)\left(1\right)\)
tương tự \(\cos B\le\frac{1}{2}\left(\frac{BF}{AB}+\frac{BD}{BC}\right)\left(2\right);\cos C\le\frac{1}{2}\left(\frac{CD}{BC}+\frac{CE}{AC}\right)\left(3\right)\)
do đó \(\cos A+\cos B+\cos C\le\frac{1}{2}\left(\frac{AF}{AB}+\frac{AE}{AC}+\frac{BF}{AB}+\frac{BD}{BC}+\frac{CD}{BC}+\frac{CE}{AC}\right)\)
\(\Rightarrow\cos A+\cos B+\cos C\le\frac{1}{2}\left(\frac{AF}{AB}+\frac{BF}{AB}+\frac{AE}{AC}+\frac{CE}{AC}+\frac{BD}{BC}+\frac{CD}{BC}\right)\)
\(\Rightarrow\cos A+\cos B+\cos C\le\frac{3}{2}\)
dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{AF}{AB}=\frac{AE}{AC}\\\frac{BF}{AB}=\frac{BD}{BC}\\\frac{CD}{BC}=\frac{CE}{AC}\end{cases}}\Leftrightarrow AB=AC=BC\)
do vậy cosA+cosB+cosC=3/2 <=> AB=AC=BC <=> tam giác ABC đều
Giả thiết của dề bài chưa đúng, mình sửa lại thành \(cosA+cosB+cosC=\sqrt{cosA.cosB}+\sqrt{cosB.cosC}+\sqrt{cosC.cosA}\)
Đặt \(a=\sqrt{cosA},b=\sqrt{cosB},c=\sqrt{cosC}\)
Suy từ giả thiết :
\(2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}a=b=c\\a,b,c>0\end{cases}}\)
Vậy ta có \(\sqrt{cosA}=\sqrt{cosB}=\sqrt{cosC}\Rightarrow\hept{\begin{cases}cosA=cosB=cosC\\\widehat{A}+\widehat{B}+\widehat{C}=180^o\end{cases}}\)
\(\Rightarrow\widehat{A}=\widehat{B}=\widehat{C}=60^o\)
\(\Rightarrow\Delta ABC\) là tam giác đều.
Ta có bất phương trình tương đương:
\(\Leftrightarrow x-2\left(\cos B+\cos C\right)x+2-2\cos A\ge0\)
Ta có:
\(\Delta'=\left(\cos B+\cos C\right)^2-2+2\cos A\)
\(=4\cos^2\left(\frac{B+C}{2}\right).\cos^2\left(\frac{B-C}{2}\right)-4\sin^2\left(\frac{A}{2}\right)\)
\(=4\sin^2\left(\frac{A}{2}\right)\left(\cos^2\left(\frac{B-C}{2}\right)-1\right)\le0\)
Bên cạnh đó ta có hệ số \(a=1>0\)
Từ đây ta suy ra điều phải chứng minh là đúng.