K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

Xl m.n :)) Hôm nay t rãnh nên làm jup 1 đứa bạn cái bài nì . Ai chưa biết thì tham khảo luôn nha luôn nha :)) Đề tìm số dư khi chia \(x^{2015}+x^{1945}+x^{1930}-x^2-x+1\) cho x2 - 1 Giải : Đặt \(f\left(x\right)=x^{2015}+x^{1945}+x^{1930}-x^2-x+1\) Gọi thương khi chia f(x) cho x2 - 1 là G(x) và số dư là ax + b (*) Theo đề ra ta có : \(f\left(x\right)=\left(x^2-1\right).G\left(x\right)+ax+b\) Vì đẳng thức đùng ( \(\forall x\) ) ....
Đọc tiếp

Xl m.n :))

Hôm nay t rãnh nên làm jup 1 đứa bạn cái bài nì .

Ai chưa biết thì tham khảo luôn nha luôn nha :))

Đề tìm số dư khi chia \(x^{2015}+x^{1945}+x^{1930}-x^2-x+1\) cho x2 - 1

Giải :

Đặt \(f\left(x\right)=x^{2015}+x^{1945}+x^{1930}-x^2-x+1\)

Gọi thương khi chia f(x) cho x2 - 1 là G(x) và số dư là ax + b (*)

Theo đề ra ta có :

\(f\left(x\right)=\left(x^2-1\right).G\left(x\right)+ax+b\)

Vì đẳng thức đùng ( \(\forall x\) ) . Ta đó suy ra :

+ \(f\left(1\right)=1^{2015}+1^{1945}+1^{1930}-1^2-1+1=\left(1^2-1\right).G\left(1\right)+ax+b\)

=> a + b = 2 (1)

+ \(f\left(-1\right)=\left(-1\right)^{2015}+\left(-1\right)^{1945}+\left(-1\right)^{1930}-\left(-1\right)^2-\left(-1\right)+\left(-1\right)=\left[\left(-1\right)^2-1\right].G\left(1-\right)+a.\left(-1\right)+b\)

=> b - a = 0 (2)

Cộng (1) và (2)

=> (a + b ) + ( b - a ) = 2+0

=> b = 1

=> a = 1 .

Thay vào (*) ta có :

Số dư là x + 1

Thân ~

~ S.b ~

17
2 tháng 1 2017

Tuyệt vời. Cảm ơn em đã chia sẻ.

2 tháng 1 2017

Cảm ơn nha :))

11 tháng 10 2021
Để tìm bội của n ( n khác 0 ) ta:....

a: M(1)=3

M(-2)=2

=>a+b=3 và -2a+b=2

=>a=1/3 và b=8/3

b: G(-1)=F(2)

=>(a+1)*(-1)^2-3=5*2+7a

=>a+1-3-10-7a=0

=>-6a-12=0

=>a=-2

31 tháng 5 2020

\(P=a.x^m+b.\frac{1}{x^n}\)

Áp dụng BĐT Co-si cho 2 số dương \(a.x^m\)và \(b.\frac{1}{x^n}\), ta có :

\(a.x^m+b.\frac{1}{x^n}\ge2\sqrt{\frac{ab.x^m}{x^n}}\)

\(\Rightarrow a.x^m+b.\frac{1}{x^n}\ge2\sqrt{ab.x^{m-n}}\)

Vì \(2\sqrt{ab.x^{m-n}}\)Luôn \(\ge0\)\(\Rightarrow\)\(P_{min}=0\Leftrightarrow2\sqrt{ab.x^{m-n}}=0\)

Mà \(a,b>0\Rightarrow x^{m-n}=0\Leftrightarrow m-n=0\Rightarrow m=n\)

Vậy \(P_{min}=0\Leftrightarrow m=n\)

5 tháng 5 2022

đáp án sai. hướng làm thì ok

Mọi người giúp em/ mình mấy bài này được ko ạ, cảm ơn nhìu ạ ^_^ :3 <3 ^3^ :>Bài 1: Xác định a và b để nghiệm của f(x) = (x-3)(x-4) cũng là nghiệm của g(x)= x2 - ax +bBài 2: Các số x,y (x,y khác 0) thoả mãn các điều kiện x2y +5= -3 và xy2 -7= 1 . Tìm x,yBài 3: Cho đa thức f(x) = x2 +4x -5a) Số -5 có phải nghiệm của đa thức f(x) ko?b) Viết tập hợp S tất cả các nghiệm của f(x)Bài 4: Thu gọn rồi tìm...
Đọc tiếp

Mọi người giúp em/ mình mấy bài này được ko ạ, cảm ơn nhìu ạ ^_^ :3 <3 ^3^ :>

Bài 1: Xác định a và b để nghiệm của f(x) = (x-3)(x-4) cũng là nghiệm của g(x)= x2 - ax +b

Bài 2: Các số x,y (x,y khác 0) thoả mãn các điều kiện x2y +5= -3 và xy2 -7= 1 . Tìm x,y

Bài 3: Cho đa thức f(x) = x2 +4x -5

a) Số -5 có phải nghiệm của đa thức f(x) ko?

b) Viết tập hợp S tất cả các nghiệm của f(x)

Bài 4: Thu gọn rồi tìm nghiệm của các đa thức sau:

a) f(x) = x(1-2x) + (2x -x +4)

b) g(x)= x(x-5) -x(x+2) +7x

c) h(x) = x(x-1) +1

Bài 5: Cho 

f(x)=x-101x7+101x6-101x5+...+101x2 -101x +25 . Tính f(100)

Bài 6: Cho f(x) = ax+ bx +c . Biết 7a +b = 0

Hỏi f(10) , f(-3) có thể là số âm ko?

Bài 7: Tam thức bậc hai là đa thức có dạng f(x) = ax2+ bx +c với a,b,c là hằng số khác 0

Hãy xác định các hệ số a,b biết f(1)=2;f(3)=8

Bài 8: Cho f(x)= ax+ 4x(x -1) +8 

g(x) = x3 -4x(bx +1) +c -3

trong đó a,b,c là hăngf . Xác định a,b,c để f(x) = g(x)

Bài 9: Cho f(x) = 2x+ ax +4 ( a là hằng)

g(x)= x2 -5x - b ( b là hằng)

Tìm các hệ số a,b sao cho f(1)=g(2) ;f(-1)= f(5)

 

 

 

1

rtyuiytre