tìm x thuộc z sao cho 6x-3/2x+1 có giá trị là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để C có giá trị nguyên thì \(\frac{x+1}{2x-3}\) có giá trị nguyên
\(\Rightarrow x+1⋮2x-3\)
\(\Rightarrow2x+2⋮2x-3\)
\(\Rightarrow2x-3+5⋮2x-3\)
\(\Rightarrow5⋮2x-3\)
\(\Rightarrow2x-3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow2x\in\left\{4;2;8;-2\right\}\)
\(\Rightarrow x\in\left\{2;1;4;-1\right\}\)
Vậy \(x\in\left\{-1;1;2;4\right\}\).
\(C=\frac{6x-1}{3x+2}=\frac{6x+4-5}{3x+2}=2-\frac{5}{3x+2}\)là số nguyên \(\Leftrightarrow\frac{5}{3x+2}\)nguyên mà \(x\)nguyên nên
\(3x+2\inƯ\left(5\right)=\left\{-5,-1,1,5\right\}\Leftrightarrow x\in\left\{-1,1\right\}\)(vì \(x\)nguyên)
Thử lại thấy \(x=1\)thỏa mãn \(M=5x+11\)là số chính phương.
Vậy giá trị của \(x\)thỏa mãn là \(1\).
=>y=1-2x và mx+2(1-2x)=3
=>y=1-2x và mx+2-4x=3
=>y=1-2x và x(m-4)=1
=>x=1/m-4 và y=1-2/m-4=m-4-2/m-4=m-6/m-4
P=3x+y
=3/m-4+m-6/m-4
=m-3/m-4
Để P nguyên thì m-4+1 chia hết cho m-4
=>\(m-4\in\left\{1;-1\right\}\)
=>\(m\in\left\{5;3\right\}\)
a) để B là phân số
=> 2x-1\(\ne\)0
=>2x\(\ne\)1
=>x\(\ne\)\(\frac{1}{2}\)
b) sửa đề :Tìm x để B có giá trị là 1 số nguyên
để B nguyên => x\(\in\)Z
=> 2x+5\(⋮\)2x-1
ta có : 2x-1\(⋮\)2x-1
=>(2x-5)-(2x-1)\(⋮\)2x-1
=>-4\(⋮\)2x-1
=>2x-1\(\in\)Ư(-4)={\(\pm1;\pm2;\pm4\)}
ta có bảng :
2x-1 | 1 | -1 | 2 | -2 | 4 | -4 |
x | 1 | 0 | \(\frac{3}{2}\) | \(\frac{-1}{2}\) | \(\frac{3}{2}\) | \(\frac{-3}{2}\) |
Mà x \(\in Z\)
nên x\(\in\){1;0}
Bài 1:
Để B nguyên thì \(3x+1⋮x-1\)
\(\Leftrightarrow x-1\inƯ\left(4\right)\)
\(\Leftrightarrow x-1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(x\in\left\{2;0;3;-1;5;-3\right\}\)
Bài 2:
a: Ta có: \(P=\dfrac{x^2-9}{x^2-6x+9}\)
\(=\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)^2}\)
\(=\dfrac{x+3}{x-3}\)
b: Để P nguyên thì \(x+3⋮x-3\)
\(\Leftrightarrow x-3\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(x\in\left\{4;2;5;1;6;0;9;-3\right\}\)