Cho tam giác ABC cân tại A, trung tuyến BD và CE cắt nhau tại G
A) C/m: t/g ABD = t/g ACE
B) C/m: t/g GCB cân
C) C/m: AG là p/g góc BAC
D)Gọi H là giao điểm của AG và BC, biết AG= 8cm, BC=10cm. Tính AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lý Pitago trong tam giác vuông ABC, ta có:
BC2 = AC2 + AB2
252 = 152 + AB2 \(\Rightarrow ab=20\left(cm\right)\)
Xét tam giác ABC có:
AC < AB < BC nên \(\widehat{CBA}< \widehat{BCA}< \widehat{BAC}.\)
b) Xét tam giác vuông EHA và tam giác vuông EHC có:
Cạnh EH chung
HC = HA
\(\Rightarrow\Delta EHC=\Delta EHA\) (Hai cạnh góc vuông)
Do \(\Delta EHC=\Delta EHA\Rightarrow\widehat{ECA}=\widehat{EAC}\)
\(\Rightarrow\widehat{EBA}=\widehat{EAB}\) (Cùng phụ với hai góc bên trên)
Vậy nên tam giác EAB cân tại E.
c) Tam giác CBN cân tại C có CA là đường cao nên CA đồng thời là trung tuyến.
Xét tam giác CBN có CA và BF là các đường trung tuyến mà CA giao BF tại G nên G là trọng tâm tam giác.
Theo tính chất trọng tâm ta có:
\(\frac{AG}{AC}=\frac{1}{3}\Rightarrow AG=\frac{1}{5}.15=5\left(cm\right)\)
d) Xét tam giác CBN cân tại C có CA là đường cao nên đồng thời là phân giác.
Gọi giao điểm của EH với CN là F'. Khi đó ta có \(\Delta ECH=\Delta F'CH\) (Cạnh góc vuông và góc nhọn kề)
\(\Rightarrow CE=CF'\)
Lại có \(CE=\frac{1}{2}BC=\frac{1}{2}CN\Rightarrow CF'=\frac{1}{2}CN\)
Suy ra F' là trung điểm CN hay F' trùng F.
Vậy nên E, H, FA thẳng hàng.
Bài giải :
a) Áp dụng định lý Pitago trong tam giác vuông ABC, ta có:
BC2 = AC2 + AB2
252 = 152 + AB2 ⇒ab=20(cm)
Xét tam giác ABC có:
AC < AB < BC nên ^CBA<^BCA<^BAC.
b) Xét tam giác vuông EHA và tam giác vuông EHC có:
Cạnh EH chung
HC = HA
⇒ΔEHC=ΔEHA (Hai cạnh góc vuông)
Do ΔEHC=ΔEHA⇒^ECA=^EAC
⇒^EBA=^EAB (Cùng phụ với hai góc bên trên)
Vậy nên tam giác EAB cân tại E.
c) Tam giác CBN cân tại C có CA là đường cao nên CA đồng thời là trung tuyến.
Xét tam giác CBN có CA và BF là các đường trung tuyến mà CA giao BF tại G nên G là trọng tâm tam giác.
Theo tính chất trọng tâm ta có:
AGAC =13 ⇒AG=15 .15=5(cm)
d) Xét tam giác CBN cân tại C có CA là đường cao nên đồng thời là phân giác.
Gọi giao điểm của EH với CN là F'. Khi đó ta có ΔECH=ΔF'CH (Cạnh góc vuông và góc nhọn kề)
⇒CE=CF'
Lại có CE=12 BC=12 CN⇒CF'=12 CN
Suy ra F' là trung điểm CN hay F' trùng F.
Vậy nên E, H, FA thẳng hàng.
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có
\(\widehat{A}\) chung
Do đó: ΔABD\(\sim\)ΔACE(g-g)
b) Xét ΔEGB vuông tại E và ΔDGC vuông tại D có
\(\widehat{EGB}=\widehat{DGC}\)(hai góc đối đỉnh)
Do đó: ΔEGB\(\sim\)ΔDGC(g-g)
⇒\(\frac{GB}{GC}=\frac{GE}{GD}=k\)
hay \(GC\cdot GE=GB\cdot GD\)(đpcm)
Ta có CE vuông góc AB (GT)
suy ra CE là đường cao (1)
Ta có BD vuông góc AC(GT)
suy ra BD là đường cao (2)
Mà BD giao CE tại H
Từ (1) và (2) suy ra H là trực tâm (định nghĩa )
suy ra AM vuông góc BC (1)
Ta có tam giác ABC cân tại A (GT)
suy ra AB=AC (định nghĩa )
Ta có AM vuông góc BC (CMT)
suy ra góc AMB = góc AMC = 90
Xét tam giác AMB và tam giác AMC có
AM chung
góc AMB = góc AMC =90
AB= AC(CMT)
suy ra tam giác AMB = tam giác AMC (ch-cgv)
suy ra M là trung điểm BC (2)
Từ (1) và (2) suy ra AM là đường trung trực của BC
OK rồi đó
câu c nè, tam giác ahb=tam giác ahc(chứng minh trên) suy ra bh=ch(tc) suy ra dh là trung tuyến
k là trung điểm của ac(gt) suy ra ek là trung tuyến
suy ra cg cũng là trung tuyến
suy ra cg,dh,ek cùng đi qua 1 điểm
a ) Xét ∆BAD và ∆CAD
AB = AC ( ∆ABC cân )
\(\widehat{B}=\widehat{C}\)
\(\widehat{BAD}=\widehat{DAC}\)
=> ∆ABH = ∆ACH(g.c.g)
b, Cho BH = 8cm, AH = 10cm. Tính AH này là sao , biết AH mà còn bắt tính AH
a: Xét ΔABD và ΔACE có
AB=AC
góc A chung
AD=AE
Do đó: ΔABD=ΔACE
b: Xét ΔGCB có \(\widehat{GBC}=\widehat{GCB}\)
nên ΔGBC cân tại G
c: Xét ΔBAG và ΔCAG có
AB=AC
AG chung
BG=CG
DO đó: ΔBAG=ΔCAG
Suy ra: \(\widehat{BAG}=\widehat{CAG}\)
hay AG là tia phân giác của góc BAC