Cho ∆ABC vuông tại A, AB=6cm ,AC =8cm ,đường cao AD(D∈BC) đường phân giác BE cắt AD tại F a,c/m ∆DBA ~∆ABC b,tính đọ dài BC ,AD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét ΔDBAΔDBA và ΔABCΔABC có :
Góc B chung
Góc ADB = Góc BAC ( =90 o )
⇒ΔDBA=ΔABC(g−g)
b, Ta có : AB2 + AC2 =BC2 ( định lý Py -ta-go )
=> BC = \(\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\)
Lại có :\(\dfrac{AD}{AC}=\dfrac{AB}{BC}\)(ΔDBA∼ΔABC)
Suy ra : AD=\(\dfrac{AC.AB}{BC}\)=\(\dfrac{6.8}{10}\)=4,8(cm)
c, Ta có : BF là tia phân giác của góc B
=> \(\dfrac{FD}{FA}=\dfrac{BD}{AB}\)(1)
BE là tia phân giác của góc B
=> \(\dfrac{EA}{EC}=\dfrac{AB}{BC}\)(2)
Mà \(\dfrac{DB}{AB}\)=\(\dfrac{AB}{BC}\)(ΔDBA∼ΔABC)(3)
Từ (1), (2) và (3) suy ra :
\(\dfrac{FD}{FA}\)=\(\dfrac{EA}{EC}\)⇒FD.EC=EA.FA
Bạn bị nhầm ở câu tính AD.
\(\dfrac{AD}{DC}=\dfrac{AB}{BC}\Rightarrow\dfrac{AD}{AC}=\dfrac{AB}{AB+BC}=\dfrac{6}{6+10}=\dfrac{3}{8}\Rightarrow AD=\dfrac{3}{8}AC=3\)
Xét tam giác vuông ABC có:
BC^2=AB^2+AC^2
BC^2=6^2+8^2
BC=√6^2+8^2=10cm
Xét tam giác ABC có CD phân giác:
AD/BD=AC/BC(t/chất đường phân giác )
<=>AD+BD/BD=AC+BC/BC
<=>6/BD=18/10
<=>BD=10.6/18≈3,3cm
Ta có : AD+BD=AB
=>AD=AB-BD=6-3,3=2,7
a/ \(BD\) là đường phân giác \(\widehat{BAC}\)
\(\to\dfrac{DA}{DC}=\dfrac{BA}{BC}\) hay \(\dfrac{DA}{DC}=\dfrac{6}{10}=\dfrac{3}{5}\)
\(\to\dfrac{DA}{3}=\dfrac{DC}{5}=\dfrac{DA+DC}{3+5}=\dfrac{AC}{8}=\dfrac{8}{8}=1\)
\(\to\begin{cases}DA=3\\DC=5\end{cases}\)
b/ \(S_{\Delta ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.AH.BC\)
\(\to AB.AC=AH.BC\)
\(\to \dfrac{AB.AC}{BC}=AH=\dfrac{6.8}{10}=3,2(cm)\)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot10=6\cdot8=48\)
hay AH=4,8(cm)
Vậy: AH=4,8cm
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC\(\sim\)ΔHBA
b: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=4.8\left(cm\right)\)
a) Xét ∆ABC và ∆HBA, ta có:
<A=<H=90°
<B chung
⟹∆ABC∼∆HBA(g.g)
b) Áp dụng định lý py-ta-go vào ∆ABC(<A=90°(gt)) , ta có:
BC2 =AB2+AC2
=82+62=64+36=100
⟹BC=√100=10cm
Ta có: AC/HA=BC/AB ( Vì ∆ABC∼∆HBA(CM ở a))
⟹6/HA=10/8⟹HA=6*8/10=4,8cm
Hình bạn tự vẽ
a) Theo định lí Pytago ta có \(BC^2=AB^2+AC^2=100\)
\(\Rightarrow BC=10\left(cm\right)\)
mà BD=DC=> AD=BD=DC\(=\frac{BC}{2}=5\left(cm\right)\)(t/c đường trung tuyến ứng với cạnh huyền)
Theo hệ thức lượng trong tam giác vuông ta có
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{36}+\frac{1}{64}=\frac{25}{576}\)
\(\Rightarrow AH=\frac{24}{5}\left(cm\right)\)
b, Xét tứ giác ABEC có hai đường chéo AE,BC cắt nhau tại trung điểm mỗi đường
=> tứ giác ABEC là hình bình hành
mà \(\widehat{BAC}=90^0\) => tứ giác ABEC là hình chữ nhật
a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{B}\) chung
Do đó: ΔABC∼ΔHBA(g-g)
Suy ra: \(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB^2=BC\cdot BH\)(đpcm)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Ta có: \(AB^2=BC\cdot BH\)(cmt)
nên \(BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=\dfrac{36}{10}=3.6\left(cm\right)\)
Vậy: BH=3,6cm
a) Xét ΔABC có
AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất đường phân giác của tam giác)
\(\Leftrightarrow\dfrac{BD}{6}=\dfrac{CD}{8}\)
mà BD+CD=BC(D nằm giữa B và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{6}=\dfrac{CD}{8}=\dfrac{BD+CD}{6+8}=\dfrac{BC}{14}=\dfrac{7}{14}=\dfrac{1}{2}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{BD}{6}=\dfrac{1}{2}\\\dfrac{CD}{8}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=3\left(cm\right)\\CD=4\left(cm\right)\end{matrix}\right.\)
Vậy: BD=3cm; CD=4cm
a. Xét \(2\Delta:\Delta DBA\) và \(\Delta ABC\) có:
\(\left\{{}\begin{matrix}\widehat{BDA}=\widehat{BAC}=90^o\\\widehat{ABC.}chung\end{matrix}\right.\)
\(\Rightarrow\Delta DBA\sim\Delta ABC\left(g-g\right)\)
b. Áp dụng định lý Pi - ta - go, ta có:
\(BC^2=6^2+8^2=100\left(cm\right)\)
\(\Rightarrow BC=10\left(cm\right)\)
Có: \(\Delta DBA\sim\Delta ABC\) (theo câu a)
\(\Rightarrow\dfrac{AD}{AC}=\dfrac{AB}{BC}\)
\(\Leftrightarrow AD=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4,8\left(cm\right)\)