Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a,15x-8x=9`
`<=>7x=9`
`<=>x=9/7`
`b,(x+3)(x-5)=0`
`<=>` $\left[ \begin{array}{l}x+3=0\\x-5=0\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=5\\x=-3\end{array} \right.$
Vậy `S={-3,5}`
Bài 2:
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
Theo t/c đường phân giác, ta được: \(\frac{BD}{BA}=\frac{DF}{AF},\frac{BA}{BC}=\frac{EA}{EC}\)
Chứng minh được \(\Delta BAC\infty\Delta BDA\left(g.g\right)\Rightarrow\frac{BA}{BC}=\frac{BD}{BA}\)
Vậy \(\frac{DF}{FA}=\frac{AE}{EC}\)
Bạn nên suy nghĩ một lúc nếu ko làm được thì mới hỏi. Chúc bạn học tốt.
Tk mình đi mọi người mình bị âm nè!
Ai tk mình mình tk lại cho
a, Xét ΔABC có góc BAC vuông
=> \(BC^2=AB^2+AC^2\)
=> \(BC^2=25\)
\(\Rightarrow BC=5\) (cm)
Xét ΔABC và ΔDAC, có
\(\widehat{BAC}=\widehat{ADC}\)
\(\widehat{C}\) chung
=> ΔABC∼ΔDAC(g.g)
=> \(\dfrac{AD}{AB}=\dfrac{AC}{BC}\)
=>\(\dfrac{AD}{3}=\dfrac{4}{5}\)
\(\Rightarrow AD=2,4cm\)
b, Vì ΔABC∼ΔDAC (cmt)
=>\(\dfrac{AC}{BA}=\dfrac{DC}{AC}\)
Xét ΔADB và ΔADC, có:
+ \(\widehat{ADC}=\widehat{ADB}\) (=90 độ)
+ \(\dfrac{AC}{BA}=\dfrac{DC}{AC}\)
=> ΔADB∼ΔADC (c.g.c)
=> \(\dfrac{AD}{BD}=\dfrac{DC}{AD}\)
\(\Rightarrow AD.AD=BD.DC\)
=> \(AD^2\)= BD.DC(đpcm)
a) Xét tam giác ADB và tam giác BAC, ta có:
Góc B chung
Góc D = góc A (=900)
=> Tam giác ADB đồng dạng tam giác CAB
b) Ko biết chứng minh cái gì
c) Có tam giác ADB đồng dạng tam giác CAB (cmt)
\(\Rightarrow\frac{BD}{AB}=\frac{AB}{BC}\left(1\right)\)
Xét tam giác ABD, có BF là tia phân giác
\(\Rightarrow\frac{AF}{AB}=\frac{FD}{BD}\Rightarrow\frac{BD}{AB}=\frac{DF}{FA}\left(2\right)\)
Xét tam giác ABD, có BD là tia phân giác
\(\Rightarrow\frac{AE}{AB}=\frac{EC}{BC}\Rightarrow\frac{AB}{AE}=\frac{BC}{EC}\Rightarrow\frac{AB}{BC}=\frac{AE}{EC}\left(3\right)\)
Từ (1); (2) và (3)
\(\Rightarrow\frac{DF}{FA}=\frac{AE}{EC}\)
a, Xét ΔDBAΔDBA và ΔABCΔABC có :
Góc B chung
Góc ADB = Góc BAC ( =90 o )
⇒ΔDBA=ΔABC(g−g)
b, Ta có : AB2 + AC2 =BC2 ( định lý Py -ta-go )
=> BC = \(\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\)
Lại có :\(\dfrac{AD}{AC}=\dfrac{AB}{BC}\)(ΔDBA∼ΔABC)
Suy ra : AD=\(\dfrac{AC.AB}{BC}\)=\(\dfrac{6.8}{10}\)=4,8(cm)
c, Ta có : BF là tia phân giác của góc B
=> \(\dfrac{FD}{FA}=\dfrac{BD}{AB}\)(1)
BE là tia phân giác của góc B
=> \(\dfrac{EA}{EC}=\dfrac{AB}{BC}\)(2)
Mà \(\dfrac{DB}{AB}\)=\(\dfrac{AB}{BC}\)(ΔDBA∼ΔABC)(3)
Từ (1), (2) và (3) suy ra :
\(\dfrac{FD}{FA}\)=\(\dfrac{EA}{EC}\)⇒FD.EC=EA.FA
Bạn bị nhầm ở câu tính AD.
\(\dfrac{AD}{DC}=\dfrac{AB}{BC}\Rightarrow\dfrac{AD}{AC}=\dfrac{AB}{AB+BC}=\dfrac{6}{6+10}=\dfrac{3}{8}\Rightarrow AD=\dfrac{3}{8}AC=3\)