K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: CM A>4/9

A=1/3^2+1/4^2+...+1/60^2

=>A>1/3*4+1/4*5+...+1/60*61

=>A>1/3-1/61=58/183>4/9

Sửa đề: so sánh với 1/2

1/3^2<1/2*3

1/4^2<1/3*4

...

1/80^2<1/79*80

=>1/3^2+1/4^2+...+1/80^2<1/2-1/3+1/3-1/4+...+1/79-1/80=39/80<1/2

16 tháng 6 2020

Ta có : \(\frac{1}{32}+\frac{1}{42}+\frac{1}{52}+...+\frac{1}{102}< \frac{1}{32}+\frac{1}{32}+\frac{1}{32}+...+\frac{1}{32}\)   (8 số hạng)

\(\Rightarrow\frac{1}{32}+\frac{1}{42}+\frac{1}{52}+...+\frac{1}{102}< \frac{1}{32}.8=\frac{1}{4}< \frac{1}{2}\)

\(\Rightarrow\frac{1}{32}+\frac{1}{42}+\frac{1}{52}+...+\frac{1}{102}< \frac{1}{2}\left(đpcm\right)\)

16 tháng 6 2020

\(A=\frac{1}{32}+\frac{1}{42}+...+\frac{1}{102}< \frac{1}{32}+\frac{1}{32}+...+\frac{1}{32}=\frac{8}{32}< \frac{16}{32}=\frac{1}{2}\)

Vậy \(A< \frac{1}{2}\)

7 tháng 5 2021

undefined

Giải:

A=1/22+1/32+1/42+...+1/92

Ta có:

1/22<1/1.2

1/32<1/2.3

1/42<1/3.4

...

1/92<1/8.9

⇒A<1/1.2+1/2.3+1/3.4+...+1/8.9

A<1/1-1/2+1/2-1/3+1/3-1/4+...+1/8-1/9

A<1/1-1/9

A<8/9

 

Ta có:

1/22>1/2.3

1/32>1/3.4

1/42>1/4.5

...

1/92>1/9.10

⇒A>1/2.3+1/3.4+1/4.5+...+1/9.10

A>1/2-1/3+1/3-1/4+1/4-1/5+...+1/9-1/10

A>1/2-1/10

A>2/5

Vậy 2/5<A<8/9 (đpcm)

Chúc bạn học tốt!

28 tháng 4 2022

Đặt A=11⋅2+12⋅3+...+17⋅8A=11⋅2+12⋅3+...+17⋅8

Dễ thấy: B=122+132+...+182B=122+132+...+182<A=11⋅2+12⋅3+...+17⋅8(1)<A=11⋅2+12⋅3+...+17⋅8(1)

Ta có:A=11⋅2+12⋅3+...+17⋅8A=11⋅2+12⋅3+...+17⋅8

=1−12+12−13+...+17−18=1−12+12−13+...+17−18

=1−18<1(2)=1−18<1(2)

Từ (1);(2)(1);(2) ta có: B<A<1⇒B<1

1 tháng 10 2017

sua de \(\frac{3}{x^4-x^3+x-1}\) \(-\frac{1}{x^4+x^3-x-1}-\frac{4}{x^5-x^4+x^3-x^2+x-1}\) (dk \(x\ne+-1\) )

P=\(\frac{3}{\left(x^2-1\right)\left(x^2-x+1\right)}-\frac{1}{\left(x^2-1\right)\left(x^2+x+1\right)}-\frac{4}{\left(x^2-1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)}\)

=\(\frac{2}{x^4+x^2+1}>0\)

 P\(< \frac{32}{9}\Leftrightarrow\frac{2}{x^4+x^2+1}< \frac{32}{9}\)

\(\Leftrightarrow16x^4+16x^2+7>0\)

\(\Rightarrow\)\(0< P< \frac{32}{9}\) VOI X KHAC 1;-1