K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2016

1995100=...5

142000=...6

91000=...1

\(\Rightarrow\)1995100+14200-91000=...5+...6-....1=....1-...1=.....0 chia het cho 10

\(\Rightarrow\)1995100+14200-91000 chia het cho 10

Chọn B

3 tháng 12 2023

b

11 tháng 3 2022

Công bố:

Ta cần chứng minh số có dạng \(224999...91000...09\)(n-2 cs 9 nằm giữa 4 và 1; n chữ số 0) đều là các số chính phương.

Thật vậy, ta có \(224999...91000...09=224999...91000...000+9=224999...90000...000+10^{n+1}+9\)

           n-2 cs 9      n cs 0                      n-2 cs 9         n+1 cs 0                            n-2 cs 9        n+2 cs 0 

\(=224999...9.10^{n+2}+10^{n+1}+9=\left(224000...00+999...9\right).10^{n+2}+10^{n+1}+9\)

                 n-2 cs 9                                                                 n-2 cs 0             n-2 cs 9

\(=\left(224.10^{n-2}+10^{n-2}-1\right).10^{n+2}+10^{n+1}+9=224.10^{2n}+10^{2n}-10^{n+2}+10^{n+1}+9\)\(=225.10^{2n}-100.10^n+10.10^n+9=\left(15.10^n\right)^2-90.10^n+9\)\(=\left(15.10^n\right)^2-2.15.10^n.3+3^2=\left(15.10^n-3\right)^2\)là số chính phương.

Vậy \(224999...91000...09\)(n-2 cs 9 nằm giữa 4 và 1; n chữ số 0) là số chính phương.

\(\Rightarrowđpcm\)

19 tháng 8 2023

 a) Ta thấy \(999993^{1999}⋮̸5\) và \(55555^{1997}⋮5\) nên \(999993^{1999}-55555^{1997}⋮̸5\), mâu thuẫn đề bài.

 b) 

Ta có \(17^{25}=17^{4.6+1}=17.\left(17^4\right)^6=17.\overline{A1}=\overline{B7}\) có chữ số tận cùng là 7. \(13^{21}=13^{4.5+1}=13.\left(13^4\right)^5=13.\overline{C1}=\overline{D3}\) có chữ số tận cùng là 3. \(24^4=4^4.6^4=\overline{E6}.\overline{F6}=\overline{G6}\) có chữ số tận cùng là 6 nên \(17^{25}-13^{21}+24^4\) có chữ số tận cùng là chữ số tận cùng của \(7-3+6=10\) hay là 0. Vậy \(17^{25}-13^{21}+24^4⋮10\)

c) Cách làm tương tự câu b.

7 tháng 1 2018

Ta có :

|a|<1 (1)

|b-1|<10 (2)

|a-c|<10 (3)

Nhân (1) với (2)  ,ta được:

|a|.|b-1|<1.10

<=>|ab-a|<10 (4)

Cộng (3),với (4) vế theo vế:

|a-c|+|ab-a|<20

<=>|a-c+ab-a|<20

<=>|ab-c|<20 (đpcm)

12 tháng 1 2018

thanks bạn!!!

14 tháng 12 2017

45636

14 tháng 12 2017

Bài ko có đáp số vì IaI luồn lớn hơn hoặc bằng 0

29 tháng 11 2018

10 bn nhanh nhất k nha

29 tháng 11 2018

\(a,\)Ta có:

\(A=3+3^2+3^3+...+3^{10}\)

    \(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^9+3^{10}\right)\)

    \(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^9\left(1+3\right)\)

    \(=3\cdot4+3^3\cdot4+...+3^9\cdot4\)

    \(=4\left(3+3^3+...+3^9\right)⋮4\)

\(\Rightarrow3+3^2+3^3+...+3^{10}⋮10\\ \Rightarrow A⋮10\)

\(\Rightarrow\)ĐPCM

đáng lẽ ra nên đặt với n thõa mãn điều kiện gì chứ

5 tháng 9 2016
bai nay mk lam dc 3 phan b ,c va d