Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2n + 111...1 = 3n + (111..1 - n)
n chữ số n chữ số
Vì 1 số và tổng các chữ của nó có cùng số dư trong phép chia cho 3 => 111...1 - n chia hết cho 3
Mà 3n chia hết cho 3 => 2n + 111...1 chia hết cho 3
b) 10n + 18n - 1
= 100...0 - 1 - 9n + 27n
n chữ số 0
= 999...9 - 9n + 27
n chữ số 9
= 9.(111..1 - n) + 27n
n chữ số 1
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3 => 111...1 - n chia hết cho 3
=> 9.(111...1 - n) chia hết cho 27; 27n chia hết cho 27
=> 10n + 18n - 1 chia hết cho 27
c) 10n + 72n - 1
= 100...0 - 1 + 72n
n chữ số 1
= 999...9 - 9n + 81n
n chữ số 9
= 9.(111...1 - n) + 81n
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9 => 111...1 - n chia hết cho 9
Tiếp theo làm tương tự câu trên .
a) Ta có : A = 1028 + 8
= 100...0 + 8 (28 chữ số 0)
= 100...008 (27 chữ số 0)
Nhận xét: 1028 + 8 có 3 chữ số tận cùng là 008
lại có : Tổng của 3 chữ số này là : 0 + 0 + 8 = 8 => chia hết cho 8
=> 1028 + 8 \(⋮\)8 (1)
Nhận xét : 1028 + 8 = 100...008 (27 chữ số 0)
=> Tổng các chữ số của số trên là : 1 + 0 + 0 + .... + 0 + 0 + 8 = 9 \(⋮\)9 (27 số hạng 0)
=> 1028 + 8 \(⋮\)9(2)
Từ (1) và (2) ta có :
ƯCLN(8,9) = 1
=> 1028 + 8 \(⋮\)BCNN(8,9)
=> 1028 + 8 \(⋮\)72
Ta có :
\(10^{28}+8=100...008\)(27 chữ số 0 )
Xét \(008⋮8\Rightarrow10^{28}+8⋮8\left(1\right)\)
Xét \(1+27\times0+8=9⋮9\Rightarrow10^{28}+8⋮9\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\Rightarrow10^{28}+8⋮72\)
a) 88 + 220
= (23)8 + 220
= 224 + 220
= 220.24 + 220
= 220(24 + 1 )
= 220.17 chia hết cho 17
Vậy 88 + 220 chia hết cho 17
b) Ta có : 10n + 18n -1 = 999...9 (có n chữ số 9) + 1 + 18 -1
= 999...9 + 18n
= 9. 111...1 + 9. 2n
= 9( 111...1 + 2n )
Ta có : 9( 111...1 + 2n ) = 9. (111...1 - n + 3n)
Số 111...1 và số n là 2 số chia hết cho 3 có cùng số dư. Do đó:
111...1 - n chia hết cho 3 ; 3n chia hết cho 3
Vậy 10n + 18n -1 chia hết cho 27
a, 10n chia 9 dư 1 => 10n - 1 có các chữ số là 9 thì chia hết cho 9.
=> 10n chia 9 dư 1.
b, Muốn chia hết cho 72 thì phải chia hết cho 8 và 9 vì ( 8,9 ) = 1
1028 + 8 chia hết cho 9 vì các chữ số chia hết cho 9.
1028 + 8 chia hết cho 8 vì có tận cùng là 008.
=> 1028 + 8 chia hết cho 72.
b, Đặt A = 10^28 + 8 Vì 10^28 có 3 chữ số cuối là 000 => 10^28 chia hết cho 8 Có 8 chia hết cho 8 => A chia hết cho 8 (1) A = 10^28 + 8 = 1000...0 ( 28 chữ số 0) = 1000...8( 27 chữ số 0) A có tổng các chữ số là 9 chia hết cho 9 => A chia hết cho 9 (2) Từ (1) , (2) => A chia hết cho 8 , A chia hết cho 9 mà UCLN(8,9)= 1 => A chia hết cho (8,9) hay A chia hết cho 72 Vậy A chia hết cho 72
d) \(10^n+72n-1\)\(=100...0-1+72n\)
=\(999...9-9n+81n\)
n chữ số 9
=\(9.\left(111...1-n\right)+81n\)
VÌ 1 số và tổng các chữ số có cùng số dư trong phép chia cho 9 => 111...1 - n chia hết 9
mà 81n chia hết 9 => 10n + 72n -1 chia hết 9
b) \(10^n+18n-1\)
<=> \(100..0+\left(27n-9n\right)-1\)chia hết \(27\)
n
<=> \(\left(100...0-1-9n\right)+27n\)chia hết \(27\)
n
<=> \(\left(99...9-9n\right)+27n\)chia hết \(27\)
n
<=> \(9.\left(11..1-n\right)+27n\)chia hết \(27\)
<=> \(9.9k+27n\)chia hết \(27\)
<=> \(81k+27n\)chia hết \(27\)
1/
Gọi số cần tìm là a
Ta có :
a : 17 dư 8
=> a - 8 chia hết cho 17
=> a + 17 - 8 chia hết cho 17
=> a + 9 chia hết cho 17
a : 25 dư 16
=> a - 16 chia hết cho 25
=> a + 25 - 16 chia hết cho 25
=> a + 9 chia hết cho 25
=> a + 9 thuộc BC ( 17 ; 25 )
Ta có :
17 = 17
25 = 52
=> BCNN ( 17 ; 25 ) = 17 . 52 = 425
=> BC ( 17 ; 25 ) = B ( 425 ) =
=> a + 9 = B ( 425 ) = { 0 ; 425 ; 950 ; 1375 ; .... }
=> a = { -9 ; 416 ; 941 ; 1366 ; .... }
Mà a là số tự nhiên nhỏ nhất
=> a = 416
Vậy số cần tìm là 416
2, Câu hỏi của Dương Đình Hưởng - Toán lớp 6 - Học toán với OnlineMath
đáng lẽ ra nên đặt với n thõa mãn điều kiện gì chứ