a) n^4-10n^3+35n^2-50n+7 chia hết cho 24 với n nguyên
n^4+4n^3-8n^2-16n+368 chia hết cho 384 với n chẵn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Đề bài sai, với \(n=1;2;3...\) thì đều sai hết
b. Đề bài sai, với \(n=0;2;4...\) thì vẫn sai hết
A\(=n^4-4n^3-4n^2+16n\)
\(=\left(n^4-4n^2\right)+\left(-4n^3+16n\right)\)
\(=n^2\left(n^2-4\right)-4n\left(n^2-4\right)\)
\(=n\left[\left(n^2-4\right)\left(n-4\right)\right]\)
\(n.\left(n+2\right)\left(n-2\right)\left(n-4\right)\)
Ta có: tích 4 số chắn liên tiếp chia hết cho 384
=> đpcm
n chẵn => n=2k
\(\Rightarrow A=\left(2k\right)^4-4.\left(2k\right)^3-4\left(2k\right)^2+16.2k\\ =16k^4-32k^3-16k^2+32k\\ =16k^3\left(k-2\right)-16k\left(k-2\right)\\ =\left(k-2\right)\left(16k^3-16k\right)\\ =\left(k-2\right)\left(16k\left(k^2-1\right)\right)\\ =16.\left(k-2\right)\left(k-1\right).k.\left(k+1\right)\\ \)
Tích 4 số tự nhiên liên tiếp luôn chia hết cho 3;8 nên chia hết cho 24
\(\Rightarrow A⋮16.24\\ \Rightarrow A⋮384\)
Ta phân tích biểu thức đã cho ra nhân tử :
A=n4−4n3−4n2+16nA=n4−4n3−4n2+16n
=[n4−4n3]−[4n2−16n]=n3(n−4)−4n(n−4)=[n4−4n3]−[4n2−16n]=n3(n−4)−4n(n−4)
=n(n−4)[n2−4]=n(n−2)(n+2)(n−4)=n(n−4)[n2−4]=n(n−2)(n+2)(n−4)
Vì n chẵn và lớn hơn 4 nên ta đặt n = 2k + 2 , trong đó k > 1 và biểu diễn theo k,ta có : A=(2k+2)(2k)(2k+4)(2k−2)A=(2k+2)(2k)(2k+4)(2k−2)
=16k(k−1)(k+1)(k+2)=16(k−1)(k)(k+1)(k+2)=16k(k−1)(k+1)(k+2)=16(k−1)(k)(k+1)(k+2)
Ta nhận thấy (k−1)(k)(k+1)(k+2)(k−1)(k)(k+1)(k+2)là tích của bốn số nguyên dương liên tiếp,tích này chia hết cho 2.3.4 = 24
Vậy tích A đã cho chia hết cho 16.2.3.4 = 384 => đpcm
Câu hỏi của Nghĩa Nguyễn - Toán lớp 9 - Học toán với OnlineMath
\(a,n^3+6n^2+8n\)
\(=n\left(n^2+6n+8\right)\)
\(=n\left(n^2+4n+2n+8\right)\)
\(=n\left[\left(n^2+4n\right)+\left(2n+8\right)\right]\)
\(=n\left[n\left(n+4\right)+2\left(n+4\right)\right]\)
\(=n\left(n+2\right)\left(n+4\right)\)
Vì n chẵn ,đây là tích của ba số chẵn liên tiếp => chia hết cho 48
b, tương tự a