cho tam giác abc có góc a =90 độ , đường cao ah ,gọi d,e theo thứ tự là hình chiếu vuông góc của h trên ab và ac , chứng minh rằng :
a) ab2 : ac2 =hb:hc
b) de 3 =bd.ce.bc
c) ab2 :ac3 =db;ec
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu B: Gọi I, K lần lượt là trung điểm của HC, HB. Chứng minh 1/OH^2=1/Ok^2+1/OI^2
a, Sử dụng định lí Pytago cho các tam giác vuông HAB và HAC để có đpcm
b, 1. Chứng minh tương tự câu a)
2. Sử dụng định lí Pytago cho tam giác vuông AHM
a, Xét tứ giác DHEA có :
góc Â=90
góc D=90
góc E=90
Mà trong tứ giác có 3 góc vuông là hình chữ nhật
Vậy tứ giác DHEA là HCN
Mà ta có trong hình chữ nhật có 2 đường chéo cắt nhau tại trung điểm mỗi đường thì bằng nhau
Suy ra : DE=AH
b,Cần c/m tam giác AHM
Thì suy ra : AH=AM
Mà AH vuông góc với DE ( 2đg chéo của hình chữ nhật DHEA )
Nên : AM sẽ vuông góc với DE (đpcm)
k cho mình nha ! Thanks !
Sửa đề: D,E lần lượt là hình chiếu của H trên AB,AC
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
b: Ta có: ADHE là hình chữ nhật
=>\(\widehat{AED}=\widehat{AHD}\)
mà \(\widehat{AHD}=\widehat{B}\left(=90^0-\widehat{HAB}\right)\)
nên \(\widehat{AED}=\widehat{B}\)
Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MB=MC
Ta có: MA=MC
=>ΔMAC cân tại M
=>\(\widehat{MAC}=\widehat{MCA}\)
Ta có: \(\widehat{MAC}+\widehat{AED}\)
\(=\widehat{MCA}+\widehat{B}\)
\(=90^0\)
=>AM\(\perp\)DE
c: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot10=6\cdot8=48\)
=>\(AH=\dfrac{48}{10}=4,8\left(cm\right)\)
Ta có: ADHE là hình chữ nhật
=>DE=AH
mà AH=4,8cm
nên DE=4,8cm
a. xét tam giác AHB và tam giác CAB có:
góc H= góc A= 90o
góc B chung
=> tam giác AHB~tam giác CAB (g.g) (1)
xét tam giác CHA và tam giác CAB có:
góc H=góc A=90o
góc C chung
=> tam giác CHA~tam giác CAB (g.g) (2)
từ (1) và (2) => tam giác AHB~tam giác CHA
=> \(\dfrac{AH}{CH}\)=\(\dfrac{BH}{AH}\)
=> AH2=BH.CH