Cho tam giác ABC có góc ACB=40 độ , đường cao AH.Tia phân giác của góc HAC cắt BC tại C.Kẻ Dk vuông góc (K thuộc AC).
a,CM tam giác AHD=tam giác AKD.
b,CM AD vuông góc HK
help mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AD chung
góc HAD=góc KAD
=>ΔAHD=ΔAKD
b: AH=AK
DH=DK
=>AD là trung trực của HK
c: Gọi M là giao của DK với AH
Xét ΔAMC có
MK,CH là đường cao
MK cắt CH tại D
=>D là trực tâm
=>AD vuông góc MC
mà AD vuông góc CE
nên C,M,E thẳng hàng
=>AH,KD,CE đồng quy tại M
a) xét tam giác AKD và tam giác AHD , có :
góc KAD = góc DAH ( do AD là phân giác )
góc DKA = góc DHA (=90 độ )
AD : cạnh chung
do đó tam giác AKD = tam giác AHD ( cạnh huyền - góc nhọn )
b) có DK vuông góc với AC ( gt)
AB vuông góc với AC ( do tam giác ABC vuông tại A )
=) KD song song AB (dhnb 2 đt song song )
=) góc ADK = góc DAB ( 2 góc so le trong )
lại có góc BDA = góc KDA ( do tam giác ADK = tam giác AHD )
=) tam giác ABD cân tại B
mà góc ABD=60 độ ( D thuộc AC )
=) tam giác ABD đều
c) có BH + AH > AB ( BĐT tam giác)
CH + AH > AC ( BĐT tam giác)
cộng cả hai vế của 2 BĐT trên ta có :
BH+CH+AH+AH>AB+AC
(=) BC + 2AH > AB + AC
hay AB + AC < BC + 2AH
chúc e học tốt !!
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
b) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AD chung
\(\widehat{HAD}=\widehat{KAD}\)(AD là tia phân giác của \(\widehat{HAK}\))
Do đó: ΔAHD=ΔAKD(cạnh huyền-góc nhọn)
c) Ta có: ΔADH vuông tại H(gt)
nên \(\widehat{HDA}+\widehat{HAD}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{BDA}+\widehat{HAD}=90^0\)(2)
Ta có: \(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}\)(tia AD nằm giữa hai tia AB,AC)
nên \(\widehat{BAD}+\widehat{KAD}=90^0\)(3)
Từ (2) và (3) suy ra \(\widehat{BDA}=\widehat{BAD}\)
Xét ΔBAD có \(\widehat{BDA}=\widehat{BAD}\)(cmt)
nên ΔBAD cân tại B(Định lí đảo của tam giác cân)
Cm tam giác AHD =AKD
Xét tam giác AHD vuông tại H và tam giác AKD vuông tại K
Có: góc HAD = góc KAD (vì AD là tia phân giác)
AD là cạnh chung
=> tam giác AHD = tam giác KAD (cạnh huyền _ góc nhọn)
CM : AD vuông góc với HK
Gọi O là giao điểm của HK và AD
Xét tam giác AHO và Tam giác AKO
Có : góc HAO = góc KAO (vì AD là tia phân giác)
AO là cạnh chung
AH = AK (do tam giác AHD = tam giác AKD)
=> tam giác AHO = tam giác AKO (c.g.c)
=>góc AOH =AOK (2 cặp góc tương ứng)
Mà góc AOH + AOK =1800 (2 góc kề bù)
=> góc AOH = góc AOK =1800/2 = 900
=> AO vuông góc với HK
=> AD vuông góc với HK
Tính AC
Xét tam giác AHC vuông tại H
Có: AC2 = AH2 + HC2
Thay số : AC2 =62 + 82
AC2 = 36 +64
AC2 = 100
=> AC = \(\sqrt{100}\)
=> AC = 50
a) Xét \(\Delta ABC\)có AB = 5cm; AC = 12cm. Theo định lý Py-ta-go ta có:
\(BC^2=AB^2+AC^2\)
\(BC^2=5^2+12^2\)
\(BC^2=25+144\)
\(BC^2=169\)
\(BC=13\)
Vậy cạnh BC = 13cm
b)Xét tam giác AHD và tam giác AKD ta có:
\(\widehat{AHD}=\widehat{AKD}=90^o\)
AD chung
\(\widehat{DAH}=\widehat{DAK}\)(AD là tia phân giác)
=> tam giác AHD = tam giác AKD (g.c.g)