Cho p=a^3+(a+1)^3+(a+2)^3. Chứng minh P chia hết cho 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a chia hết cho 3 => a2 chia hết cho 9
Vì b chia hết cho 3 => b2 chia hết cho 9
Vì a, b chia hết cho 3 => ab chia hết cho 3.3 = 9
=> a2 + ab + b2 chia hết cho 9
2n+3 chia hết cho n- 2
=>(2n+3)- 2. (n- 2) chia hết cho n- 2
=>2n +3 - 2n +4 chia hết cho n- 2
=>7 chia hết cho n- 2
=> n- 2 thuộc Ư(7) ={......}
RỒI KẺ bẢNG Là XONG
Tớ không chắc cách tớ là hay nhưng hiện tại tớ chỉ mới nghĩ ra cách này thoi a~,
\(P=a^3+\left(a+1\right)^3+\left(a+2\right)^3=a^3+a^3+3a^2+3a+1+a^3+6a^2+12a+8=3a^3+9a^2+15a+9\)
\(=3\left[\left(a^3+a^2\right)+\left(2a^2+2a\right)+\left(3a+3\right)\right]=3\left[a^2\left(a+1\right)+2a\left(a+1\right)+3\left(a+1\right)\right]=3\left(a+1\right)\left(a^2+2a+3\right)=3\left(a+1\right)\left[a\left(a+2\right)+3\right]\)
*)Xét a= 3k => \(a\left(a+2\right)+3=3k\left(3k+2\right)+3⋮3\Rightarrow P⋮9\)
*) Xét a= 3k+1 => \(a\left(a+2\right)+3=\left(3k+1\right)\left(3k+3\right)+3⋮3\Rightarrow P⋮9\)
*) Xét a=3k+2 => \(a+1=3k+3⋮3\Rightarrow P⋮9\)
Vậy P chia hết cho 9 với mọi số nguyên a.
Máy tớ không thấy được hết nên chụp lại cho cậu...... dãy nó ngắn quá.
1)
a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)
Vì \(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)
\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)
\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)
\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)
Vì \(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)
Xét hằng đẳng thức sau:
x^3 + y^3 + z^3 - 3xyz
= (x + y)^3 - 3xy(x + y) + z^3 - 3xyz
= [(x + y)^3 + z^3] - 3xy(x + y + z)
= (x + y + z)[(x + y)^2 - z(x + y) + z^2) - 3xy(x + y + z)
= (x + y + z)(x^2 + y^2 + z^2 + 2xy - xz - yz) - 3xy(x + y + z)
= (x + y + z)(x^2 + y^2 + z^2 - xy - yz - xz)
---> x^3 + y^3 + z^3 = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - xz) + 3xyz
Áp dụng hằng đẳng thức trên, ta có:
a^3 + (a + 1)^3 + (a + 2)^3
= (a + a + 1 + n + 2)[ a^2 + (a + 1)^2 + (a + 2)^2 -a(a + 1) - (a + 1)(a + 2) - a(a + 2)] - 3a(a + 1)(a + 2)
= (3a + 3)(a^2 + a^2 + 2a + 1 + a^2 + 4a + 4 - a^2 - a - a^2 - 3a - 2 - a^2 - 2a) - 3a(a + 1)(a + 2)
= 9(a + 1) - 3a(a + 1)(a + 2)
Vì a(a + 1)(a + 2) là tích 3 số nguyên liên tiếp nên chia hết 6
--> 3a(a + 1)(a + 2) chia hết 3.6 = 18 chia hết 9
--> 9(a + 1) - 3a(a + 1)(a + 2) chia hết 9
--> dpcm(Nho :D)
ngu người, câu này mà cũng ko biết làm