K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2022

làm hộ nhanh nhá

đang cần, mng giúp đỡ

 

7 tháng 3 2018

a) Ta thấy ngay tam giác MAE và tam giác MEC có chung chiều cao hạ từ M xuống AC, EC = 4AE nên \(S_{MEC}=4S_{MAE}=4\times20=80\left(cm^2\right)\)

b) Ta thấy tam giác MBD và tam giác MCD có chung chiều cao và đáy BD = DC nên \(S_{MBD}=S_{MCD}\)

 Ta thấy tam giác EBD và tam giác ECD có chung chiều cao và đáy BD = DC nên \(S_{EBD}=S_{ECD}\)

Vậy nên \(S_{MBE}=S_{MEC}=80\left(cm^2\right)\)

Ta có \(\frac{S_{AME}}{S_{MEC}}=\frac{1}{4};\frac{S_{ABE}}{S_{EBC}}=\frac{1}{4}\Rightarrow\frac{S_{AME}+S_{ABE}}{S_{MEC}+S_{EBC}}=\frac{1}{4}\Rightarrow\frac{S_{MBE}}{S_{MEBC}}=\frac{1}{4}\)

\(\Rightarrow S_{MEBC}=4.80=320\left(cm^2\right)\)

\(\Rightarrow S_{MBC}=320+80=400\left(cm^2\right)\)

\(\Rightarrow S_{ABC}=400-20-80=300\left(cm^2\right)\)

14 tháng 3 2018

làm thế nào để vẽ hình trên máy tính

15 tháng 5 2021

Cho tam giác ABC. Gọi D là điểm chính giữa của cạnh BC. Lấy E trên cạnh AC sao cho AE bằng 1/5 AC. Nối D với E. Kéo dài DE cắt AB kéo dài tại M. Nối M với C. Biết diện tích AME bằng 20 cm2 .Tính diện tích MEC và ABC?

Được cập nhật 22 tháng 5 2019 lúc 20:10

Hoàng Thị Thu Huyền  Quản lý

7 tháng 3 2018 lúc 10:05

a) Ta thấy ngay tam giác MAE và tam giác MEC có chung chiều cao hạ từ M xuống AC, EC = 4AE nên SMEC=4SMAE=4×20=80(cm2)

b) Ta thấy tam giác MBD và tam giác MCD có chung chiều cao và đáy BD = DC nên SMBD=SMCD

 Ta thấy tam giác EBD và tam giác ECD có chung chiều cao và đáy BD = DC nên SEBD=SECD

Vậy nên SMBE=SMEC=80(cm2)

15 tháng 5 2021
Cau bé thông minh

Kẻ MK vuông góc AC

\(S_{AME}=\dfrac{1}{2}\cdot MK\cdot AE\)

\(S_{MEC}=\dfrac{1}{2}\cdot MK\cdot EC\)

mà AE=1/4*EC

nên \(S_{AME}=\dfrac{1}{4}\cdot S_{MEC}\)

=>\(S_{MEC}=80\left(cm^2\right)\)

17 tháng 5 2015

phải là lấy điểm E để AE = 1/2 AC

6 tháng 3 2017

ai trả lời giúp mình nha

bài hình này trong TĐN

5 tháng 9 2023

tick cho mình đi 

Lời giải

a) Tính diện tích tam giác ABC

Vì MA = 3/2 MC, nên MC = 2MA/3.

Vì CE = 1/2 BC, nên BC = 2CE.

Vì D là giao của BM và AE, nên MD = MC - ME = 2MA/3 - MC/2 = MA/6.

Vì AM = 45cm, nên MC = 2AM/3 = 30cm, BC = 60cm và MD = AM/6 = 7.5cm.

Diện tích tam giác ABC là:

b) So sánh diện tích tam giác ABM và diện tích tam giác CME

Vì AM = 3/2 MC, nên BM = 2MC/3.

Vì ME = MC/2, nên BM = 4ME/3.

Vì BM/ME = 4/3, nên diện tích tam giác ABM/diện tích tam giác CME = 4/3.

Vậy, diện tích tam giác ABM lớn hơn diện tích tam giác CME.

c) So sánh diện tích tam giác MED và diện tích tam giác MAD

Vì MD = AM/6, nên diện tích tam giác MED/diện tích tam giác MAD = AM/6 * 1/AM = 1/6.

Vậy, diện tích tam giác MED nhỏ hơn diện tích tam giác MAD.

Vẽ hình

[Hình tam giác ABC]

Trong hình trên, ta có:

  • AB = 45cm
  • AM = 30cm
  • MC = 20cm
  • BC = 60cm
  • CE = 30cm
  • MD = 7.5cm

Kết luận

  • Diện tích tam giác ABC là 1350 cm2
  • Diện tích tam giác ABM lớn hơn diện tích tam giác CME
  • Diện tích tam giác MED nhỏ hơn diện tích tam giác MAD

 

25 tháng 5 2022

a/

Ta có 

\(NC=2AN\Rightarrow\dfrac{AN}{AC}=\dfrac{1}{3}\)

Hai tg ABN và tg ABC có chung đường cao từ B->AC nên

\(\dfrac{S_{ABN}}{S_{ABC}}=\dfrac{AN}{AC}=\dfrac{1}{3}\Rightarrow S_{ABN}=\dfrac{1}{3}xS_{ABC}\)

Hai tg DBN và tg DCN có chung đường cao từ D->BC và BM=CM nên

đường cao từ B->DM = đường cao từ C->DM

Hai tg DNA và tg DNC có chung đường cao từ D->AC nên

\(\dfrac{S_{DNA}}{S_{DNC}}=\dfrac{AN}{CN}=\dfrac{1}{2}\)

Hai tg này lại có chung DN nên

\(\dfrac{S_{DNA}}{S_{DNC}}=\) đường cao từ A->DM / đường cao từ C->DM \(=\dfrac{1}{2}\)

=> đường cao từ A->DM / đường cao từ B->DM \(=\dfrac{1}{2}\)

Hai tg DNA và tg DBN có chung DN nên

\(\dfrac{S_{DNA}}{S_{DBN}}=\) đường cao từ A->DM / đường cao từ B->DM \(=\dfrac{1}{2}\)

\(\Rightarrow S_{DBN}=2xS_{DNA}\)

\(\Rightarrow S_{DNA}=S_{DBN}-S_{ABN}=2xS_{DNA}-S_{DBN}\Rightarrow S_{DNA}=S_{ABN}=\dfrac{1}{3}xS_{ABC}=\dfrac{10}{3}cm^2\)

b/

Hai tg DNB và tg DNC có chung DN và đường cao từ B->DM = đường cao từ C->DM nên

\(S_{DNB}=S_{DNC}\)

c/ Hai tg DNA và tg ABN có chung đường cao từ N->DB nên

\(\dfrac{S_{DNA}}{S_{ABN}}=\dfrac{AD}{AB}=1\)