Giải phương trình
\(\sqrt{-3x+2}\)+1<x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge\dfrac{1}{3}\)
PT \(\Leftrightarrow2\left(x-\sqrt{3x-1}\right)+\left[\left(2x+1\right)-\sqrt{3x^2+7x}\right]=0\)
\(\Leftrightarrow\dfrac{2\left(x^2-3x+1\right)}{x+\sqrt{3x-1}}+\dfrac{\left(2x+1\right)^2-\left(3x^2+7x\right)}{2x+1+\sqrt{3x^2+7x}}=0\)
\(\Leftrightarrow\left(x^2-3x+1\right)\left[\dfrac{2}{x+\sqrt{3x-1}}+\dfrac{1}{2x+1+\sqrt{3x^2+7x}}\right]=0\)
Cái ngoặc to vô nghiệm, đến đây bạn có thể giải.
1) \(\sqrt[]{3x+7}-5< 0\)
\(\Leftrightarrow\sqrt[]{3x+7}< 5\)
\(\Leftrightarrow3x+7\ge0\cap3x+7< 25\)
\(\Leftrightarrow x\ge-\dfrac{7}{3}\cap x< 6\)
\(\Leftrightarrow-\dfrac{7}{3}\le x< 6\)
ĐKXĐ: \(-\dfrac{1}{3}\le x\le6\)
\(\left(\sqrt{3x+1}-4\right)+\left(1-\sqrt{6-x}\right)+\left(3x^2-14x-5\right)=0\)
\(\Leftrightarrow\dfrac{3\left(x-5\right)}{\sqrt{3x+1}+4}+\dfrac{x-5}{1+\sqrt{6-x}}+\left(x-5\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(\dfrac{3}{\sqrt{3x+1}+4}+\dfrac{1}{1+\sqrt{6-x}}+3x+1\right)=0\)
\(\Leftrightarrow x-5=0\) (do \(\dfrac{3}{\sqrt{3x+1}+4}+\dfrac{1}{1+\sqrt{6-x}}+3x+1>0;\forall x\))
\(\Rightarrow x=5\)
ĐKXĐ: \(\left\{{}\begin{matrix}3x+1>=0\\6-x>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=-\dfrac{1}{3}\\x< =6\end{matrix}\right.\)
\(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8=0\)
=>\(\sqrt{3x+1}-4+1-\sqrt{6-x}+3x^2-14x-5=0\)
=>\(\dfrac{3x+1-16}{\sqrt{3x+1}+4}+\dfrac{1-6+x}{1+\sqrt{6-x}}+3x^2-15x+x-5=0\)
=>\(\dfrac{3\cdot\left(x-5\right)}{\sqrt{3x+1}+4}+\dfrac{x-5}{\sqrt{6-x}+1}+\left(x-5\right)\left(3x+1\right)=0\)
=>\(\left(x-5\right)\left(\dfrac{3}{\sqrt{3x+1}+4}+\dfrac{1}{\sqrt{6-x}+1}+3x+1\right)=0\)
=>x-5=0
=>x=5(nhận)
ĐKXĐ: \(x\ge1\)
\(\sqrt{5x-1}=\sqrt{3x-2}+\sqrt{x-1}\)
\(\Leftrightarrow5x-1=3x-2+x-1+2\sqrt{\left(3x-2\right)\left(x-1\right)}\)
\(\Leftrightarrow x+2=2\sqrt{\left(3x-2\right)\left(x-1\right)}\)
\(\Leftrightarrow x^2+4x+4=4\left(3x-2\right)\left(x-1\right)\)
\(\Leftrightarrow11x^2-24x+4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{11}\left(loại\right)\\x=2\end{matrix}\right.\)
\(\sqrt{x+1}+1=4x^2+\sqrt{3x}\left(x\ge0\right)\\ \Leftrightarrow\sqrt{x+1}+\sqrt{3x}=4x^2-1\\ \Leftrightarrow\dfrac{1-2x}{\sqrt{x+1}-\sqrt{3x}}=\left(2x-1\right)\left(2x+1\right)\\ \Leftrightarrow\left(1-2x\right)\left(\dfrac{1}{\sqrt{x+1}-\sqrt{3x}}+2x+1\right)=0\\ \Leftrightarrow x=\dfrac{1}{2}\)
Vì biểu thức trong ngoặc còn lại lớn hơn 0 với mọi \(x\ge0\) bằng cách khảo sát hàm số ta sẽ nhận ra điều này.
Bạn coi lại đề xem có sai không chứ nghiệm giải ra xấu cực. Và phương trình không rút gọn hết nghe cũng rất vô lý.
dạ vâng,em cx không bt có sai ko do đây là đề của thầy em đưa,chắc cx có sai sót mong thầy bỏ qua
\(\sqrt{-3x+2}+1< x\) (ĐKXĐ: \(D=(-\infty;\frac{2}{3}]\))
\(\Leftrightarrow\sqrt{2-3x}< x-1\)
\(\Leftrightarrow\hept{\begin{cases}x-1>0\\2-3x< x^2-2x+1\end{cases}}\Leftrightarrow\hept{\begin{cases}x>1\\x^2+x-1>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>1\\x< \frac{-1-\sqrt{5}}{2}\left(h\right)x>\frac{-1+\sqrt{5}}{2}\end{cases}}\Leftrightarrow x>1\)
Kết hợp ĐKXĐ suy ra BPT vô nghiệm.