K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2021

O A B x C E D M

a, xét tg AEO và CEO có : EO chung

^AEO = ^CEO = 90

OA = OC = r

=> Tg AEO = tg CEO (ch-cgv)

=> ^AOE = ^COE 

xét tg MAO và tg MCO  có : Mo chung

OA = OC = r

=> tg MAO = tg MCO (cg-c)

=> ^MAO = ^MCO 

mà ^MAO = 90

=> ^MCO = 90 => OC _|_ MC

có C thuộc 1/2(o)

=> MC là tt của 1/2(o)

b, xét tứ giác MCOA có : ^MCO = ^MAO = 90

=> ^MCO + ^MAO = 180

=>MCOA nội tiếp

+ có D thuộc 1/(o) dk AB (gt) => ^ADB = 90 = ADM

có MEA = 90 do AC _|_ MO (Gt)

=> ^ADM = ^MEA = 90

=> MDEA nt

30 tháng 4 2023

a) a1. Chứng minh \(BAOE\) là tứ giác nội tiếp.

Tứ giác \(BAOE:\left\{{}\begin{matrix}\hat{OEB}=90^o\left(\text{tiếp tuyến}\right)\\\hat{OAB}=90^o\left(gt\right)\end{matrix}\right.\)

\(\Rightarrow\hat{OEB}+\hat{OAB}=90^o+90^o=180^o\Rightarrow BAOE\) là tứ giác nội tiếp (đpcm).

a2. Chứng minh : \(BH.BO=BD.BC\).

Ta có : \(\hat{ADC}=90^o\) (góc nội tiếp chắn nửa đường tròn)

\(\Rightarrow AD\) là đường cao của \(\Delta ABC\) vuông tại \(A\Rightarrow BD.BC=AB^2\left(1\right).\)

Mặt khác : \(\left\{{}\begin{matrix}OA=OE=R\left(gt\right)\\AB=BE\left(\text{tính chất hai tiếp tuyến cắt nhau}\right)\end{matrix}\right.\)

\(\Rightarrow OB\) là đường trung trực của \(AE\Rightarrow\hat{AHB}=90^o\)

\(\Rightarrow AH\) là đường cao của \(\Delta ABC\) vuông tại \(A\Rightarrow BH.BO=AB^2\left(2\right).\)

Từ \(\left(1\right),\left(2\right)\Rightarrow BH.BO=BD.BC\) (đpcm).

b) b1. Chứng minh \(DHOC\) là tứ giác nội tiếp.

Tứ giác \(AHDB:\hat{AHB}=\hat{ADB}=90^o\left(cmt\right)\). Mà hai góc này có đỉnh kề nhau trong tứ giác và cùng nhìn cạnh \(AB\) nên đây là tứ giác nội tiếp \(\Rightarrow\hat{ABH}=\hat{ADH}.\)

Mà : \(\left\{{}\begin{matrix}\hat{ADH}+\hat{HDC}=90^o\left(=\hat{ADC}\left(cmt\right)\right)\\\hat{ABH}+\hat{HAB}=90^o\left(\text{hai góc phụ nhau}\right)\end{matrix}\right.\Rightarrow\hat{HDC}=\hat{HAB}\left(3\right).\)

Mặt khác : \(\hat{AOB}=\hat{HAB}\left(\text{cùng phụ }\hat{ABH}\right)\left(4\right).\)

Từ \(\left(3\right),\left(4\right)\Rightarrow\hat{AOB}=\hat{HDC}\Rightarrow DHOC\) là tứ giác nội tiếp (dấu hiệu nhận biết) (đpcm).

b2. Chứng minh : \(\hat{BHD}=\hat{OHC}\).

Do \(DHOC\) là tứ giác nội tiếp (cmt) \(\Rightarrow\hat{OCD}=\hat{BHD}\left(5\right)\) (cùng bù với \(\hat{OHD}\)) và \(\hat{OHC}=\hat{ODC}\left(6\right)\) (hai góc có đỉnh kề nhau cùng nhìn cạnh \(OC\)).

Mặt khác : \(OA=OD=R\Rightarrow\Delta OAD\) cân tại \(O\Rightarrow\hat{ODA}=\hat{OAD}.\)

Và : \(\left\{{}\begin{matrix}\hat{OAD}+\hat{OCD}=90^o\left(\text{hai góc phụ nhau}\right)\\\hat{ODA}+\hat{ODC}=90^o\left(=\hat{ADC}\right)\end{matrix}\right.\Rightarrow\hat{OCD}=\hat{ODC}\left(7\right).\)

Từ \(\left(5\right),\left(6\right),\left(7\right)\Rightarrow\hat{BHD}=\hat{OHC}\) (đpcm).

c) Chưa nghĩ ra ạ:)

30 tháng 4 2023

a: Xét (O) có
MA,MC là tiếp tuyến

=>MA=MC

mà OA=OC

nên MO là trung trực của AC

=>MO vuông góc AC tại E

góc ADB=1/2*sđ cung AB=90 độ

=>AD vuông góc MB

góc ADM=góc AEM=90 độ

=>AMDE nội tiếp

b: ΔMAB vuông tại A có AD là đường cao

nên MA^2=MD*MB