Cho hình thang cân ABCD có AB // CD, CD=2AB. Hai đường chéo vuông góc với nhau tại O. Lấy H,K thứ tự là trung điểm của OC và OD. Chứng minh rằng trục đối xứng ABCD và AKHB trùng nhau
Giúp với?/ Cảm ơn nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
OA+OC=AC
OB+OD=BD
mà AC=BD và OC=OD
nên OA=OB
Xét ΔOAB vuông tại O có OA=OB
nên ΔOAB vuông cân tại O
=>góc OAB=góc OBA=45 độ
Xét ΔOCD vuông tại O có OC=OD
nên ΔOCD vuông cân tại O
=>góc OCD=góc ODC=45 độ
góc OAB=góc OCD=45 độ
mà hai góc này ở vị trí so le trong
nên AB//CD
Xét tứ giác ABCD có
AB//CD
AC=BD
=>ABCD là hình thang cân
a;Vì AB//CD nên theo định lí Ta-lét ta có:
\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)
\(\Rightarrow OA.OD=OC.OB\)
b;Xét \(\Delta AOH\) và \(\Delta COK\)có:
\(\widehat{AHO}=\widehat{CKO=90^o}\)
\(\widehat{AOH}=\widehat{COK}\) (hai góc đối đỉnh)
\(\Rightarrow\Delta AOH~\Delta COK\left(g.g\right)\)
\(\Rightarrow\dfrac{OA}{OC}=\dfrac{OH}{OK}\left(1\right)\)
Vì AB//CD nên theo hệ quả của định lí Ta-lét ta có
\(\dfrac{AB}{CD}=\dfrac{OA}{OC}\left(2\right)\)
Từ 1 và 2 ta có:
\(\dfrac{OH}{OK}=\dfrac{AB}{CD}\)