K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2017

Giải bài 39 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 39 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

25 tháng 8 2021

undefined

25 tháng 8 2021

Hình vẽ minh họaundefined

OA+OC=AC

OB+OD=BD

mà AC=BD và OC=OD

nên OA=OB

Xét ΔOAB vuông tại O có OA=OB

nên ΔOAB vuông cân tại O

=>góc OAB=góc OBA=45 độ

Xét ΔOCD vuông tại O có OC=OD

nên ΔOCD vuông cân tại O

=>góc OCD=góc ODC=45 độ

góc OAB=góc OCD=45 độ

mà hai góc này ở vị trí so le trong

nên AB//CD

Xét tứ giác ABCD có

AB//CD

AC=BD

=>ABCD là hình thang cân

22 tháng 4 2017

Giải bài 39 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

22 tháng 4 2017

a;Vì AB//CD nên theo định lí Ta-lét ta có:

\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)

\(\Rightarrow OA.OD=OC.OB\)

b;Xét \(\Delta AOH\)\(\Delta COK\)có:

\(\widehat{AHO}=\widehat{CKO=90^o}\)

\(\widehat{AOH}=\widehat{COK}\) (hai góc đối đỉnh)

\(\Rightarrow\Delta AOH~\Delta COK\left(g.g\right)\)

\(\Rightarrow\dfrac{OA}{OC}=\dfrac{OH}{OK}\left(1\right)\)

Vì AB//CD nên theo hệ quả của định lí Ta-lét ta có

\(\dfrac{AB}{CD}=\dfrac{OA}{OC}\left(2\right)\)

Từ 1 và 2 ta có:

\(\dfrac{OH}{OK}=\dfrac{AB}{CD}\)

26 tháng 8 2021

undefined

14 tháng 2 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét ∆ ADC và  ∆ BCD, ta có:

AD = BC (tính chất hình thang cân)

∠ (ADC) =  ∠ (BCD) (gt)

DC chung

Do đó:  ∆ ADC =  ∆ BCD (c.g.c) ⇒ ∠ C 1 =  ∠ D 1

Trong  ∆ OCD ta có:  ∠ C 1 =  ∠ D 1  ⇒  ∆ OCD cân tại O ⇒ OC = OD (1)

AC = BD (tính chất hình thang cân) ⇒ AO + OC = BO + OD (2)

Từ (1) và (2) suy ra: AO = BO.