K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Khi m=-2 thì phương trình trở thành \(x^2+2x-3=0\)

=>(x+3)(x-1)=0

=>x=-3 hoặc x=1

b: \(\text{Δ}=\left(-2\right)^2-4\left(m-1\right)=4-4m+4=-4m+8\)

Để phương trình có hai nghiệm phân biệt thì -4m+8>0

=>-4m>-8

hay m<2

Theo hệ thức Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=m-1\end{matrix}\right.\)

Theo đề, ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1-2x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=-\dfrac{2}{3}\\x_1=2x_2=-\dfrac{4}{3}\end{matrix}\right.\)

Ta có: \(x_1x_2=m-1\)

\(\Leftrightarrow m-1=\dfrac{8}{9}\)

hay m=17/9(nhận)

4 tháng 2 2022

a. Thay m=-2 ta được: \(x^2+2x-2-1=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

b. Để phương trình (*) có 2 nghiệm phân biệt thì \(\Delta=4-4\left(m-1\right)>0\Leftrightarrow1>m-1\Leftrightarrow m< 2\)

Áp dụng định lí Vi-et ta có: \(x_1+x_2=\dfrac{-2}{1}=-2\)

Ta có: \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1-2x_2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-\dfrac{4}{3}\\x_2=\dfrac{-2}{3}\end{matrix}\right.\)\(\Rightarrow x_1.x_2=\dfrac{m-1}{1}=\dfrac{-4}{3}.\dfrac{-2}{3}=m-1\Rightarrow m=\dfrac{17}{9}\)<2

Vậy m=\(\dfrac{17}{9}\)

 

18 tháng 4 2022

lớp 9=))???

18 tháng 4 2022

hong giải thì bín :v

12 tháng 11 2021

Bước 1: Tìm điều kiện của tham số để phương trình có hai nghiệm phân biệt.

Bước 2: Khi phương trình đã có hai nghiệm phân biệt, ta áp dụng Vi-ét để tìm các giá trị của tham số.

Bước 3. Đối chiếu với điều kiện và kết luận bài toán.

xem tr sách của anh

12 tháng 11 2021

Bài 1:

PT có 2 nghiệm \(\Leftrightarrow\Delta=\left(m+2\right)^2-4\cdot2\ge0\Leftrightarrow m^2+4m-8\ge0\Leftrightarrow\left[{}\begin{matrix}m\le-2-2\sqrt{3}\\m\ge-2+2\sqrt{3}\end{matrix}\right.\)

Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=2\end{matrix}\right.\)

Ta có \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=\dfrac{9}{2}\Leftrightarrow2\left(x_1^2+x_2^2\right)=9x_1x_2\)

\(\Leftrightarrow2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]=18\\ \Leftrightarrow2\left(m+2\right)^2-8=18\\ \Leftrightarrow2m^2+8m+8-8=18\\ \Leftrightarrow m^2+4m-9=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-2+\sqrt{13}\\m=-2-\sqrt{13}\end{matrix}\right.\left(tm\right)\)

12 tháng 11 2021

Để PT có 2 nghiệm \(\Leftrightarrow\Delta=\left[2\left(m+2\right)\right]^2-4\left(m^2+4\right)\ge0\)

\(\Leftrightarrow4m^2+16m+16-4m^2-16\ge0\\ \Leftrightarrow m\ge0\)

Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+2\right)\\x_1x_2=m^2+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2\left(m+2\right)\left(1\right)\\x_1x_2=m^2+4\left(2\right)\\x_1+2x_2=7\left(3\right)\end{matrix}\right.\)

\(\left(3\right)-\left(1\right)=x_2=3-2m\)

Thay vào \(\left(1\right)\Leftrightarrow x_1=2\left(m+2\right)-x_2=2m+4-3+2m=4m+1\)

Thay vào \(\left(2\right)\Leftrightarrow\left(3-2m\right)\left(4m+1\right)=m^2+4\)

\(\Leftrightarrow10m+3-8m^2=m^2+4\\ \Leftrightarrow9m^2-10m+1=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\\m=\dfrac{1}{9}\end{matrix}\right.\left(tm\right)\)

 

24 tháng 4 2020

Bài 1 : 

Để phương trình có 2 nghiệm x1 , x2 

\(\Rightarrow\Delta'=\left(-1\right)^2-\left(2m-1\right)\ge0\)

\(\Rightarrow m\le1\)

\(\Rightarrow\) Khi đó phương trình có 2 nghiệm x1 , x2 thỏa mãn 

\(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-1\end{cases}}\)

Mà \(3x_1+2x_2=1\Rightarrow x_1+2\left(x_1+x_2\right)=1\Rightarrow x_1+2.2=1\Rightarrow x_1=-3\)

Vì \(x_1=-3\) là 1 nghiệm của phương trình

\(\Rightarrow\left(-3\right)^2-2\left(-3\right)+2m-1=0\Rightarrow m=-7\)

 
24 tháng 4 2020

Bài 2 : 

\(ĐKXĐ:x\ne\pm4\)

Ta có : 

\(\frac{2x-1}{x+4}-\frac{3x-1}{4-x}=5+\frac{96}{x^2-16}\)

\(\Rightarrow\frac{2x-1}{x+4}+\frac{3x-1}{x-4}=5+\frac{96}{\left(x-4\right)\left(x+4\right)}\)

\(\Rightarrow\frac{2x-1}{x+4}\left(x+4\right)\left(x-4\right)+\frac{96}{\left(x-4\right)\left(x+4\right)}\left(x+4\right)\left(x-4\right)\)

\(\Rightarrow\left(2x-1\right)\left(x-4\right)+\left(3x-1\right)\left(x+4\right)=5\left(x+4\right)\left(x-4\right)+96\)

\(\Rightarrow5x^2+2x=5x^2+16\)

\(\Rightarrow2x=16\)

\(\Rightarrow x=8\)

25 tháng 3 2016

tính denlta ra,,,,,,,có đổ máu thì mới có thành công chứ

25 tháng 3 2016

tìm đk m rồi viets là ok

a: Khi m=9 thì phương trình trở thành:

\(2x^2-19x+39=0\)

\(\Leftrightarrow2x^2-6x-13x+39=0\)

=>(x-3)(2x-13)=0

=>x=13/2 hoặc x=3

b: \(\text{Δ}=\left(2m+1\right)^2-4\cdot2\cdot\left(m^2-9m+39\right)\)

\(=4m^2+4m+1-8m^2+72m-312\)

\(=-4m^2+76m-311\)

\(=-\left(4m^2-76m+361-50\right)\)

\(=-\left(2m-19\right)^2+50\)

Để phương trình có hai nghiệm thì \(-\left(2m-19\right)^2+50>=0\)

\(\Leftrightarrow-\left(2m-19\right)^2>=-50\)

\(\Leftrightarrow\left(2m-19\right)^2< =50\)

hay \(\dfrac{-5\sqrt{2}+19}{2}< =m< =\dfrac{5\sqrt{2}+19}{2}\)

Theo Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m+1}{2}\\x_1x_2=\dfrac{m^2-9m+39}{2}\end{matrix}\right.\)

Đến đây bạn chỉ cần kết hợp cái x1+x2 và x1=2x2 để lập hệ phương trình, xong sau đó bạn chỉ cần thay vào cái tích rồi tìm m là xong

25 tháng 4 2022

xét delta phẩy có

1+1-m = 2-m vậy điều kiện để phương trình có 2 nghiệm x1;x2 là m ≤2 

theo Vi-ét ta có:

\(\left\{{}\begin{matrix}x1+x2=2\\x1x2=m-1\end{matrix}\right.\)

theo bài ra ta có: 

2x1 + x2 = 5 

x1 + 2 = 5 => x1 = 3 => x2 = -1 

ta có x1x2 = m - 1 => m - 1 = -3 

=> m = -2 vậy m = -2 để phương trình có 2 nghiệm x1;x2 thỏa mãn 2x1 + x2 = 5.