Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Khi m=-2 thì phương trình trở thành \(x^2+2x-3=0\)
=>(x+3)(x-1)=0
=>x=-3 hoặc x=1
b: \(\text{Δ}=\left(-2\right)^2-4\left(m-1\right)=4-4m+4=-4m+8\)
Để phương trình có hai nghiệm phân biệt thì -4m+8>0
=>-4m>-8
hay m<2
Theo hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=m-1\end{matrix}\right.\)
Theo đề, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1-2x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=-\dfrac{2}{3}\\x_1=2x_2=-\dfrac{4}{3}\end{matrix}\right.\)
Ta có: \(x_1x_2=m-1\)
\(\Leftrightarrow m-1=\dfrac{8}{9}\)
hay m=17/9(nhận)
a. Thay m=-2 ta được: \(x^2+2x-2-1=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
b. Để phương trình (*) có 2 nghiệm phân biệt thì \(\Delta=4-4\left(m-1\right)>0\Leftrightarrow1>m-1\Leftrightarrow m< 2\)
Áp dụng định lí Vi-et ta có: \(x_1+x_2=\dfrac{-2}{1}=-2\)
Ta có: \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1-2x_2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-\dfrac{4}{3}\\x_2=\dfrac{-2}{3}\end{matrix}\right.\)\(\Rightarrow x_1.x_2=\dfrac{m-1}{1}=\dfrac{-4}{3}.\dfrac{-2}{3}=m-1\Rightarrow m=\dfrac{17}{9}\)<2
Vậy m=\(\dfrac{17}{9}\)
Bài 1 :
Để phương trình có 2 nghiệm x1 , x2
\(\Rightarrow\Delta'=\left(-1\right)^2-\left(2m-1\right)\ge0\)
\(\Rightarrow m\le1\)
\(\Rightarrow\) Khi đó phương trình có 2 nghiệm x1 , x2 thỏa mãn
\(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-1\end{cases}}\)
Mà \(3x_1+2x_2=1\Rightarrow x_1+2\left(x_1+x_2\right)=1\Rightarrow x_1+2.2=1\Rightarrow x_1=-3\)
Vì \(x_1=-3\) là 1 nghiệm của phương trình
\(\Rightarrow\left(-3\right)^2-2\left(-3\right)+2m-1=0\Rightarrow m=-7\)
Bài 2 :
\(ĐKXĐ:x\ne\pm4\)
Ta có :
\(\frac{2x-1}{x+4}-\frac{3x-1}{4-x}=5+\frac{96}{x^2-16}\)
\(\Rightarrow\frac{2x-1}{x+4}+\frac{3x-1}{x-4}=5+\frac{96}{\left(x-4\right)\left(x+4\right)}\)
\(\Rightarrow\frac{2x-1}{x+4}\left(x+4\right)\left(x-4\right)+\frac{96}{\left(x-4\right)\left(x+4\right)}\left(x+4\right)\left(x-4\right)\)
\(\Rightarrow\left(2x-1\right)\left(x-4\right)+\left(3x-1\right)\left(x+4\right)=5\left(x+4\right)\left(x-4\right)+96\)
\(\Rightarrow5x^2+2x=5x^2+16\)
\(\Rightarrow2x=16\)
\(\Rightarrow x=8\)
a: Khi m=9 thì phương trình trở thành:
\(2x^2-19x+39=0\)
\(\Leftrightarrow2x^2-6x-13x+39=0\)
=>(x-3)(2x-13)=0
=>x=13/2 hoặc x=3
b: \(\text{Δ}=\left(2m+1\right)^2-4\cdot2\cdot\left(m^2-9m+39\right)\)
\(=4m^2+4m+1-8m^2+72m-312\)
\(=-4m^2+76m-311\)
\(=-\left(4m^2-76m+361-50\right)\)
\(=-\left(2m-19\right)^2+50\)
Để phương trình có hai nghiệm thì \(-\left(2m-19\right)^2+50>=0\)
\(\Leftrightarrow-\left(2m-19\right)^2>=-50\)
\(\Leftrightarrow\left(2m-19\right)^2< =50\)
hay \(\dfrac{-5\sqrt{2}+19}{2}< =m< =\dfrac{5\sqrt{2}+19}{2}\)
Theo Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m+1}{2}\\x_1x_2=\dfrac{m^2-9m+39}{2}\end{matrix}\right.\)
Đến đây bạn chỉ cần kết hợp cái x1+x2 và x1=2x2 để lập hệ phương trình, xong sau đó bạn chỉ cần thay vào cái tích rồi tìm m là xong
xét delta phẩy có
1+1-m = 2-m vậy điều kiện để phương trình có 2 nghiệm x1;x2 là m ≤2
theo Vi-ét ta có:
\(\left\{{}\begin{matrix}x1+x2=2\\x1x2=m-1\end{matrix}\right.\)
theo bài ra ta có:
2x1 + x2 = 5
x1 + 2 = 5 => x1 = 3 => x2 = -1
ta có x1x2 = m - 1 => m - 1 = -3
=> m = -2 vậy m = -2 để phương trình có 2 nghiệm x1;x2 thỏa mãn 2x1 + x2 = 5.
x1^2+x2^2=(x1+x2)^2-2x1x2
=((m+1)/2)^2-2*(-6/2)
=1/4(m^2+2m+1)+6
=>x1^2=1/4m^2+1/2m+25/4-x2^2
x1^2+x2=-2
=>1/4m^2+1/2m+25/4-x2^2+x2=-2
=>-x2^2+x2+1/4m^2+1/2m+33/4=0
=>x2^2-x2-1/4m^2-1/2m-33/4=0
Δ=(-1)^2-4*1*(-1/4m^2-1/2m-33/4)
=1+m^2+2m+33
=(m+1)^2+33>=33
=>Phương trình luôn có m thỏa mãn
a: Khi m=2 thì (1) trở thành \(x^2+2x-3=0\)
=>(x+3)(x-1)=0
=>x=-3 hoặc x=1
b: \(\text{Δ}=2^2-4\cdot\left(m-5\right)=4-4m+20=-4m+24\)
Để phương trình có hai nghiệm thì -4m+24>=0
=>-4m>=-24
hay m<=6
Theo đề, ta có: \(x_1x_2\left(x_1+x_2\right)=8\)
\(\Leftrightarrow-2\left(m-5\right)=8\)
=>m-5=-4
hay m=1(nhận)