\(4^2\)x\(4444446-4^3\)x\(1111111\)
Mọi người giúp mình giải nhanh nha!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4-[3^3+3]=x+[13-5^2]
4-[27+3]=x+[13-25]
4-30=x+[-8]
-26=x+[-8]
[-26]+[-8]=x
-34=x
Vậy x=-34
4 - (33 + 3) = x + (13 - 52)
4 - 33 - 3 = x + 13 - 52
4 - 27 - 3 = x + 13 - 25
-26 = x - 12
-26 + 12 = x
-14 = x
=> x = -14
\(a,PT\Leftrightarrow x^2-3x+2+x^2-x\sqrt{3x-2}=0\left(x\ge\dfrac{2}{3}\right)\\ \Leftrightarrow\left(x^2-3x+2\right)+\dfrac{x\left(x^2-3x+2\right)}{x+\sqrt{3x-2}}=0\\ \Leftrightarrow\left(x^2-3x+2\right)\left(1+\dfrac{x}{x+\sqrt{3x-2}}\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)\left(1+\dfrac{x}{x+\sqrt{3x-2}}\right)=0\)
Vì \(x\ge\dfrac{2}{3}>0\Leftrightarrow1+\dfrac{x}{x+\sqrt{3x-2}}>0\)
Do đó \(x\in\left\{1;2\right\}\)
\(b,ĐK:0\le x\le4\\ PT\Leftrightarrow x+2\sqrt{x}+1=6\sqrt{x}-3-\sqrt{4-x}\\ \Leftrightarrow x-4\sqrt{x}+4=-\sqrt{4-x}\\ \Leftrightarrow\left(\sqrt{x}-2\right)^2=-\sqrt{4-x}\)
Vì \(VT\ge0\ge VP\Leftrightarrow VT=VP=0\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}-2=0\\\sqrt{4-x}=0\end{matrix}\right.\Leftrightarrow x=4\left(tm\right)\)
Vậy PT có nghiệm \(x=4\)
- \(x^2\) + 5\(x\) - 4 = 0
-\(x^2\) + \(x\) + 4\(x\) - 4 = 0
(- \(x^2\) + \(x\)) + (4\(x\) - 4) = 0
-\(x\)(\(x-1\)) + 4\(\times\)( \(x\) -1) = 0
(\(x-1\))( -\(x\) +4) = 0
\(\left[{}\begin{matrix}x-1=0\\-x+4=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)
\(x\) \(\in\) { 1; 4}
`-x^2+5x-4 =0`
`\Rightarrow x^2-5x+4=0`
`\Rightarrow x^2-4x-x+4=0`
`\Rightarrow (x^2-4x)-(x-4)=0`
`\Rightarrow x(x-4)-(x-4)=0`
`\Rightarrow (x-4)(x-1)=0`
\(\Rightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\end{matrix}\right.\)
`\Rightarrow `\(\left[{}\begin{matrix}x=0+4\\x=0+1\end{matrix}\right.\)
``\Rightarrow `\(\left[{}\begin{matrix}x=4\\x=1\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `x={4; 1}.`
0,18x1230+0,9x4567+3x5310x0,6
=1,8x123+1,8x4567+1,8x5310
=1,8x(123+4567+5310)
=1,8x10000=18000
k mình nhé!
Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) => \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}=\frac{x^2+y^2-2z^2}{4+9-32}=\frac{76}{-19}=-4\)
=> \(\hept{\begin{cases}\frac{x^2}{4}=-4\\\frac{y^2}{9}=-4\\\frac{2z^2}{32}=-4\end{cases}}\) => \(\hept{\begin{cases}x^2=-4.4=-16\\y^2=-4.9=-36\\z^2=\left(-4.32\right):2=-64\end{cases}}\) => ko có giá trị x,y,z thõa mãn
Ta có: \(-2x=5y\) => \(\frac{x}{5}=\frac{y}{-2}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{5}=\frac{y}{-2}=\frac{x+y}{5-2}=\frac{30}{3}=10\)
=> \(\hept{\begin{cases}\frac{x}{5}=10\\\frac{y}{-2}=10\end{cases}}\) => \(\hept{\begin{cases}x=10.5=50\\y=10.\left(-2\right)=-20\end{cases}}\)
Vậy ..
\(\frac{x}{-3}=\frac{y}{-7}\Rightarrow\frac{2x}{-6}=\frac{4y}{-28}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{-6}=\frac{4y}{-28}=\frac{2x+4y}{(-6)+(-28)}=\frac{68}{-34}=-2\)
Vậy : \(\hept{\begin{cases}\frac{x}{-3}=-2\\\frac{y}{-7}=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=14\end{cases}}\)
4^2x4444446-4^3x1111111
=4^2x4444446-4^2x4444444
=16x(4444446-4444444)
=16x2
=32
= 71111136 - 71111104
= 32