K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2018

Ta có:

(n+1)2-n2=2n+1=n+(n+1)

=> A=\(\frac{2+1}{2^21^2}+\frac{2+3}{2^23^2}+... +\frac{2009+2010}{2009^22010^2}=1-\frac{1}{2^2}+\frac{1}{2^2} -\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{2009^2}-\frac{1}{2010^2} <1 \)

9 tháng 5 2017

\(A=\dfrac{3}{\left(1.2\right)^2}+\dfrac{5}{\left(2.3\right)^2}+...+\dfrac{4033}{\left(2016.2017\right)^2}\)

\(=\dfrac{3}{1.2^2}+\dfrac{5}{2^2.3^2}+...+\dfrac{4033}{2016^2.2017^2}\)

\(=\dfrac{1}{1}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+...+\dfrac{1}{2016^2}-\dfrac{1}{2017^2}\)

\(=1-\dfrac{1}{2017^2}< 1\)

\(\Rightarrow A< 1\left(đpcm\right)\)

Vậy...

20 tháng 5 2016

3/1^2.2^2+5/2^2.3^2+7/3^2.4^2+...+4019/2009^2.2010^2

=3/1.4+5/4.9+7/9.16+...+4019/4036081.4040100

= 1/1-1/4+1/4-1/9+1/9-1/16+...+1/4036081-1/4040100

= 1/1-1/4040100

= 1-1/4040100 < 1

Chúc bạn học tốt!

20 tháng 5 2016

câu hỏi là tính tổng à

20 tháng 5 2016

\(=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+...+\frac{2010^2-2009^2}{2009^2.2010^2}\)

\(=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{2009^2}-\frac{1}{2010^2}=1-\frac{1}{2010^2}\)

20 tháng 5 2016

\(=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+...+\frac{2010^2-2009^2}{2009^2.2010^2}\)

\(=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{2009^2}-\frac{1}{2010^2}=1-\frac{1}{2010^2}\)

4 tháng 5 2015

Để tui nhận xét, đầu tiên là đề bài đã đủ dễ thấy sai rùi vì đây là tính chia theo ý bạn nhưng người ta sẽ làm tưởng là cộng riêng ra, mặc khác bạn lại tụ giải thiếu dấu ngoặc của biểu thức chia là 1, cộng các số hạng là số chia mà ko có số số hạng là bao nhiu là 2 làm người ta phân vân bao nhiu số hạng. 

4 tháng 5 2015

1.2010+2.2009+3.2008+...+2010.1/(1+2+3+...+2010)+(1+2+3+…+2009)+….+(1+2)+1

=1.2010+2.2009+3.2008+...+2010.1/(1+1+...+1)+(2+2+...+2)+(3+3+...+3)+...+(2009+2009)+2010

=1.2010+2.2009+3.2008+...+2010.1/1.2010+2.2009+3.2008+...+2010.1

=1