\(A=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{4019}{2009^2.2010^2}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2016

\(=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+...+\frac{2010^2-2009^2}{2009^2.2010^2}\)

\(=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{2009^2}-\frac{1}{2010^2}=1-\frac{1}{2010^2}\)

20 tháng 5 2016

\(=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+...+\frac{2010^2-2009^2}{2009^2.2010^2}\)

\(=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{2009^2}-\frac{1}{2010^2}=1-\frac{1}{2010^2}\)

20 tháng 5 2016

3/1^2.2^2+5/2^2.3^2+7/3^2.4^2+...+4019/2009^2.2010^2

=3/1.4+5/4.9+7/9.16+...+4019/4036081.4040100

= 1/1-1/4+1/4-1/9+1/9-1/16+...+1/4036081-1/4040100

= 1/1-1/4040100

= 1-1/4040100 < 1

Chúc bạn học tốt!

20 tháng 5 2016

câu hỏi là tính tổng à

12 tháng 10 2020

a.\(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}>\frac{2}{\sqrt{n}+\sqrt{n+1}}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{n+1-n}=2\left(\sqrt{n+1}+\sqrt{n}\right)\)

áp dụng công thức cho biểu thức A có A>\(2\left(-\sqrt{2}+\sqrt{26}\right)>7\left(1\right)\)

(so sánh bình phương 2 số sẽ ra nha)

\(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}< \frac{2}{\sqrt{n}+\sqrt{n-1}}=\frac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{n-n+1}=2\left(\sqrt{n}-\sqrt{n-1}\right)\)

áp dụng công thức cho biểu thức A ta CM được

A<\(2\left(\sqrt{2}-\sqrt{2-1}+\sqrt{3}-\sqrt{3-1}+...+\sqrt{25}-\sqrt{25-1}\right)\)

=\(2\left(-\sqrt{1}+\sqrt{25}\right)=2\left(-1+5\right)=2\cdot4=8\left(2\right)\)

từ (1) và (2) => ĐPCM

b. tương tự câu a ta CM đc BT đã cho=B>\(2\sqrt{51}-2\)> \(5\sqrt{2}\left(1\right)\)

và B<\(2\sqrt{50}=\sqrt{2}\cdot\sqrt{2\cdot50}=10\sqrt{2}\left(2\right)\)

từ (1) và (2)=>ĐPCM

(bạn nhớ phải biến đổi 1 thành 1/\(\sqrt{1}\) trc khi áp dụng công thức nha)

MỜI BẠN THAM KHẢO

9 tháng 11 2017

Ta có:

\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{\sqrt{n^2}}-\frac{1}{\sqrt{\left(n+1\right)^2}}\right)\)

\(=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(< \left(1+1\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Áp dụng vào bài toán ta được

\(\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{2009\sqrt{2008}}\)

\(=2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}\right)\)

\(=2\left(1-\frac{1}{\sqrt{2009}}\right)< 2\)

22 tháng 11 2019

Buffalo way! 

\(\Leftrightarrow\frac{7}{5}\left(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}\right)\le\frac{a^2+b^2+c^2}{abc}\) (đồng bậc 2 vế)

\(\Leftrightarrow7\left(bc+a\left(c-b\right)\right)\le5\left(a^2+b^2+c^2\right)\)

Ta có:\(VP-VT=5a^2+\left(b-c\right)a+5b^2+5c^2-7bc\)

\(=\frac{\left(10a+b-c\right)^2+99\left(b-\frac{69c}{99}\right)^2+\frac{560}{11}c^2}{20}\ge0\)

qed./.

10 tháng 11 2017

1/ Ta có:

\(a^5-a^3+a=2\)

Dễ thấy a = 0 không phải là nghiệm từ đó ta có:

\(a^6-a^4+a^2=2a\)

\(\Rightarrow2a=a^6+a^2-a^4\ge2a^4-a^4\ge a^4\)

\(\Rightarrow\hept{\begin{cases}2a\ge a^4\\a>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2\ge a^3\\a>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4\ge a^6\\a>0\end{cases}}\)

Dấu = không xảy ra 

Vậy \(a^6< 4\)

9 tháng 11 2017

Câu 2/

Câu hỏi của XPer Miner - Toán lớp 9 - Học toán với OnlineMath

13 tháng 6 2019

Đặt B là tên biểu thức

Với mọi n thuộc N*, ta có: 

\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\) (*)

Áp dụng (*), ta được: 

\(B< 2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{2011}}-\frac{1}{\sqrt{2012}}+\frac{1}{\sqrt{2012}}-\frac{1}{\sqrt{2013}}\right)\)

\(=2\left(1-\frac{1}{\sqrt{2013}}\right)=2-\frac{1}{\sqrt{2013}}< 2\)