\(\dfrac{x-2}{15}+\dfrac{x-2}{21}+\dfrac{x-2}{36}+\dfrac{x-2}{45}=404\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x}{6}+\dfrac{x}{10}+\dfrac{x}{15}+........+\dfrac{x}{78}=\dfrac{220}{39}\)
\(\Leftrightarrow\dfrac{2x}{12}+\dfrac{2x}{20}+........+\dfrac{2x}{156}=\dfrac{220}{39}\)
\(\Leftrightarrow2x\left(\dfrac{1}{3.4}+\dfrac{1}{4.5}+..........+\dfrac{1}{12.13}\right)=\dfrac{220}{39}\)
\(\Leftrightarrow2x\left(\dfrac{1}{3}-\dfrac{1}{13}\right)=\dfrac{220}{39}\)
\(\Leftrightarrow2x.\dfrac{10}{39}=\dfrac{220}{39}\)
\(\Leftrightarrow x.\dfrac{20}{39}=\dfrac{220}{39}\)
\(\Leftrightarrow x=11\)
Vậy ...
Gọi biểu thức là A
\(A=\dfrac{2x}{12}+\dfrac{2x}{20}+\dfrac{2x}{30}+....+\dfrac{2x}{156}=\dfrac{200}{39}\)
Ta có công thức :
\(\dfrac{a}{b.c}=\dfrac{a}{c-b}.\left(\dfrac{1}{b}-\dfrac{1}{c}\right)\)
Áp dụng công thức trên, ta có :
\(A=\dfrac{2x}{3.4}+\dfrac{2x}{4.5}+\dfrac{2x}{5.6}+....+\dfrac{2x}{12.13}\)
\(A=2x.\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+....+\dfrac{1}{12}-\dfrac{1}{13}\right)\)
\(A=2x.\left(\dfrac{1}{3}-\dfrac{1}{13}\right)\)
\(A=2x.\left(\dfrac{10}{39}\right)=\dfrac{200}{39}\)
\(A=2x=\dfrac{200}{39}:\dfrac{10}{39}\)
\(2x=20\)
\(\Rightarrow x=10\)
mink nghĩ vậy bạn ạ
\(\dfrac{1}{15}\) + \(\dfrac{1}{21}\) + \(\dfrac{1}{28}\) + \(\dfrac{1}{36}\) +...+ \(\dfrac{2}{x\left(x+1\right)}\) = \(\dfrac{11}{40}\) (\(x\in\) N*)
\(\dfrac{1}{2}\).(\(\dfrac{1}{15}\)+\(\dfrac{1}{21}\)+\(\dfrac{1}{28}\)+\(\dfrac{1}{36}\)+.....+ \(\dfrac{2}{x\left(x+1\right)}\)) = \(\dfrac{11}{40}\) \(\times\) \(\dfrac{1}{2}\)
\(\dfrac{1}{30}\) + \(\dfrac{1}{42}\) + \(\dfrac{1}{56}\) + \(\dfrac{1}{72}\)+...+ \(\dfrac{1}{x\left(x+1\right)}\) = \(\dfrac{11}{80}\)
\(\dfrac{1}{5.6}\) + \(\dfrac{1}{6.7}\) + \(\dfrac{1}{7.8}\)+...+ \(\dfrac{1}{x\left(x+1\right)}\) = \(\dfrac{11}{80}\)
\(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + \(\dfrac{1}{6}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{8}\) + \(\dfrac{1}{8}\)-\(\dfrac{1}{9}\)+...+ \(\dfrac{1}{x}\)-\(\dfrac{1}{x+1}\) = \(\dfrac{11}{80}\)
\(\dfrac{1}{5}\) - \(\dfrac{1}{x+1}\) = \(\dfrac{11}{80}\)
\(\dfrac{1}{x+1}\) = \(\dfrac{1}{5}\) - \(\dfrac{11}{80}\)
\(\dfrac{1}{x+1}\) = \(\dfrac{1}{16}\)
\(x\) + 1 = 16
\(x\) = 16 - 1
\(x\) = 15
a) Ta có: \(\dfrac{-11}{15}< \dfrac{x}{15}< \dfrac{-8}{15}\)
nên -11<x<-8
hay \(x\in\left\{-10;-9\right\}\)
b) Ta có: \(\dfrac{3}{7}< \dfrac{x}{21}< \dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{9}{21}< \dfrac{x}{21}< \dfrac{14}{21}\)
Suy ra: 9<x<14
hay \(x\in\left\{10;11;12;13\right\}\)
c) Ta có: \(\dfrac{-67}{21}< \dfrac{x}{168}< \dfrac{-3}{8}\)
nên \(\dfrac{-536}{168}< \dfrac{x}{168}< \dfrac{-63}{168}\)
Suy ra: -536<x<-63
hay \(x\in\left\{-535;-534;...;-64\right\}\)
\(\dfrac{1}{3.7}\)+\(\dfrac{1}{7.4}\) +\(\dfrac{1}{4.9}\) +...+\(\dfrac{2}{x\left(x+1\right)}\) =\(\dfrac{2}{9}\)
\(\dfrac{2}{2.3.7}\)+\(\dfrac{2}{2.7.4}\) +\(\dfrac{2}{2.4.9}\) +...+\(\dfrac{2}{x\left(x+1\right)}\) =\(\dfrac{2}{9}\)
\(\dfrac{2}{6.7}\)+\(\dfrac{2}{7.8}\) +\(\dfrac{2}{8.9}\) +...+\(\dfrac{2}{x\left(x+1\right)}\) =\(\dfrac{2}{9}\)
2(\(\dfrac{1}{6.7}\) +\(\dfrac{1}{7.8}\) +\(\dfrac{1}{8.9}\) +...+\(\dfrac{1}{x\left(x+1\right)}\)) =\(\dfrac{2}{9}\)
2(\(\dfrac{1}{6}\) -\(\dfrac{1}{7}\) +\(\dfrac{1}{7}\) -\(\dfrac{1}{8}\) +\(\dfrac{1}{8}\) -\(\dfrac{1}{9}\) +...+\(\dfrac{1}{x}\)-\(\dfrac{1}{x+1}\) ) =\(\dfrac{2}{9}\)
2(\(\dfrac{1}{6}\) -\(\dfrac{1}{x+1}\) )=\(\dfrac{2}{9}\)
\(\dfrac{1}{6}\)-\(\dfrac{1}{x+1}\) =\(\dfrac{2}{9}\) : 2
\(\dfrac{1}{6}\)-\(\dfrac{1}{x+1}\) =\(\dfrac{1}{9}\)
\(\dfrac{1}{x+1}\) = \(\dfrac{1}{6}\) -\(\dfrac{1}{9}\)
\(\dfrac{1}{x+1}\) = \(\dfrac{1}{18}\)
x+1=18
x = 18-1
x =17
Vậy x =17
\(\dfrac{1}{21}+\dfrac{1}{28}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\)
\(\Leftrightarrow\dfrac{2}{42}+\dfrac{2}{56}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\)
\(\Leftrightarrow\dfrac{2}{6.7}+\dfrac{2}{7.8}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\)
\(\Leftrightarrow2\left(\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{2}{9}\)
\(\Leftrightarrow\dfrac{1}{6}-\dfrac{1}{x+1}=\dfrac{1}{9}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{6}-\dfrac{1}{9}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{18}\)
\(\Leftrightarrow x+1=18\)
\(\Leftrightarrow x=17\)
a)
\(\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{x\left(x+3\right)}=\dfrac{9}{38}\\ \dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{9}{38}\\ \dfrac{1}{4}-\dfrac{1}{x+3}=\dfrac{9}{38}\\\\ \dfrac{1}{x+3}=\dfrac{1}{4}-\dfrac{9}{38}\\ \dfrac{1}{x+3}=\dfrac{1}{76}\\ x+3=76\\ x=73.\)
b)
\(\dfrac{2}{42}+\dfrac{2}{56}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\\ \dfrac{2}{6.7}+\dfrac{2}{7.8}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\\ 2\left(\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{2}{9}\\ 2.\left(\dfrac{1}{6}-\dfrac{1}{x+1}\right)=\dfrac{2}{9}\\ \dfrac{1}{x+1}=\dfrac{1}{6}-\dfrac{1}{9}=\dfrac{1}{18}\\ x+1=18\\ x=17.\)
e: =>2/7-x=2/5
=>7-x=5
=>x=2
f: =>2x+3/3=10/3
=>2x+3=10
=>2x=7
=>x=7/2
g: =>(14+x)/7=15/7
=>x+14=15
=>x=1
h: =>(2x+3)/x=13/x
=>2x+3=13
=>2x=10
=>x=5
chịu