Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh BĐT:
a) Nếu x+y>1 thì x^2 +y^2 >1/2b) Nếu a.b>0 thì a/b+b/a>= 2Giups mik vs ạ
a.
Vơi mọi x, y ta luôn có:
\(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\) (1)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge x^2+y^2+2xy\)
\(\Leftrightarrow x^2+y^2\ge\dfrac{1}{2}\left(x+y\right)^2>\dfrac{1}{2}.1=\dfrac{1}{2}\) (đpcm)
b.
Sử dụng kết quả (1), ta có:
\(\dfrac{a}{b}+\dfrac{b}{a}=\dfrac{a^2+b^2}{ab}\ge\dfrac{2ab}{ab}=2\) (đpcm)
2đpcm bạn nhé
Chúc Bạn Học Tốt.
a.
Vơi mọi x, y ta luôn có:
\(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\) (1)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge x^2+y^2+2xy\)
\(\Leftrightarrow x^2+y^2\ge\dfrac{1}{2}\left(x+y\right)^2>\dfrac{1}{2}.1=\dfrac{1}{2}\) (đpcm)
b.
Sử dụng kết quả (1), ta có:
\(\dfrac{a}{b}+\dfrac{b}{a}=\dfrac{a^2+b^2}{ab}\ge\dfrac{2ab}{ab}=2\) (đpcm)
2đpcm bạn nhé
Chúc Bạn Học Tốt.