K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2017

Giả sử cả ba BĐT đều đúng, khi đó a(1−b)b(1−c)c(1−a)>164a(1−b)b(1−c)c(1−a)>164

Nhưng theo BĐT CauChy thì a(1−a)≤(a+1−a2)2=14a(1−a)≤(a+1−a2)2=14, tương tự ta có

a(1−b)b(1−c)c(1−a)≤164a(1−b)b(1−c)c(1−a)≤164, mâu thuẩn

Giả sử a(1-b),b(1-c),c(1-a)>1/4 

=> a(1-b).b(1-c).c(1-a)>(1/4)3

=> a(1-a).b(1-b).c(1-c)>(1/4)^3 

Ta có a(1-a)=1/4-(1/2-a)2<1/4 

CMTT b(1-b), c(1-c) <1/4 

=> a(1-b).b(1-c).c(1-a)<(1/4)3 trái với giả sử  

=> 1 trong các BĐT sai

2 tháng 5 2020

Bài làm

Ta có: 3a3 + 3a2b + 3ab2 + 3b3 

= 3( a3 + a2b + ab2 + b3 )

= 3[ a2( a + b ) + b2( a + b ) ]

= 3( a2 + b2 )( a + b )

Ta có: ( a2 + b2 ) > 0 V a, b

=> ( a2 + b2 ) . 3 > 0

Mà 3( a2 + b )2( a + b ) > 0 ( đpcm ) 

2 tháng 5 2020

\(3a^3+3a^2b+3ab^2+3b^3>0\)

\(\Leftrightarrow3\left(a^3+a^2b+ab^2+b^3\right)>0\)

\(\Leftrightarrow3\left[a^2\left(a+b\right)+b^2\left(a+b\right)\right]>0\)

\(\Leftrightarrow3\left(a^2+b^2\right)\left(a+b\right)>0\)(đpcm)

21 tháng 9 2019

Dùng điểm rơi a=b=1

Gọi M là biểu thức đầu bài ta có

\(M=\frac{3}{2}\sqrt{\left(3a+1\right).4}+\sqrt{\left(3b+1\right).4}\le\frac{3}{4}\left(3a+5\right)+\frac{1}{2}\left(3b+5\right)\)

\(=\frac{9a+6b}{4}+\frac{25}{4}=\frac{15}{4}+\frac{25}{4}=10\)

13 tháng 3 2016

1)a+3>b+3

=>a>b

=>-2a<-2b

=>-2a+1<-2b+1

2)x>0;y<0 =>x2.y<0;x.y2>0

=>x2.y<0;-x.y2<0

=>x2y-xy2<0

13 tháng 3 2016

1.ta có a+3>b+3

suy ra -2a-6>-2b-6

=> (-2a-6)+5>(-2b-6)+5

=>-2a+1>-2b+1

2.vì x>0=> x^2>0 và y<0=>y^2>0

=> x^2*y<0 và x*y^2>0

=> x*y^2>x^2*y

=>x^2*y-x*y^2<0

26 tháng 9 2018

Giả sử \(a\left(2-b\right)>1,b\left(2-c\right)>1,c\left(2-a\right)>1\)

\(\Rightarrow abc\left(2-a\right)\left(2-b\right)\left(2-c\right)>1\) (1)

Mặt khác, ta có: 

\(a\left(2-a\right)=-a^2+2a=-\left(a-1\right)^2+1\le1\)

Tương tự, \(b\left(2-b\right)\le1,c\left(2-c\right)\le1\)

\(\Rightarrow abc\left(2-a\right)\left(2-b\right)\left(2-c\right)\le1\),điều này trái với (1)

Vậy điều giả sử là sai.

Do đó ít nhất 1 trong 3 bất đẳng thức trên là sai.

4 tháng 12 2017

giả sử a(1-b),b(1-c),c(1-a) >1/4

=> a(1-a)b(b-1)c(c-1)>1/4^3

ma a(1-a)=a-a^2=1/4- (a-1/2)^2<=1/4

tuong tu....

=> a(1-a)b(b-1)c(c-1)=<1/4^3(trai voi gia su)

Vay trong 3 h a(1-b),b(1-c),c(1-a) co it nhat 1 so < 1/4

4 tháng 12 2017

 Ta có 1/a + 1/b + 1/c = (bc + ac + ac)/abc = ab + bc + ca 
=> a + b + c = ab + bc + ca 
<=> a + b + c - ab - bc - ca = 0 
<=> a + b + c - ab - bc - ac + abc - 1 = 0 
<=> (a - ab) + (b - 1) + (c - bc) + (abc - ac) = 0 
<=> -a(b - 1) + (b - 1) - c(b - 1) + ac(b - 1) = 0 
<=> (b - 1)(-a + 1 -c + ac) = 0 
<=> (b - 1)[ (-a + 1) + (ac - c) ] = 0 
<=> (b - 1)[ -(a - 1) + c(a - 1) ] = 0 
<=> (a - 1)(b - 1)(c - 1) = 0 
<=> a - 1 = 0 hoặc b - 1 = 0 hoặc c - 1 = 0 
<=> a = 1 hoặc b = 1 hoặc c = 1