K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2022

a, Hoành độ giao điểm tm pt 

\(\dfrac{x^2}{4}+m\left(x-1\right)-2=0\)

\(\Leftrightarrow x^2+4m\left(x-1\right)-8=0\)

\(\Leftrightarrow x^2+4mx-4m-8=0\)

\(\Delta'=4m^2-\left(-4m-8\right)=4m^2+4m+8=4\left(m^2+m\right)+2\)

\(=4\left(m+\dfrac{1}{2}\right)^2+1>0\)

 

Vậy pt luôn có 2 nghiệm pb 

hay (P) cắt (d) tại 2 điểm pb 

b, Theo Vi et \(\left\{{}\begin{matrix}x_A+x_B=-\dfrac{4m}{4}=-m\\x_Ax_B=\dfrac{-4m-8}{4}=-m-2\end{matrix}\right.\)

Ta có \(x_Ax_B\left(x_A+x_B\right)\)Thay vào ta được 

\(-m\left(-m-2\right)=m^2+2m+1-1=\left(m+1\right)^2-1\ge-1\)

Dấu ''='' xảy ra khi m = -1 

NV
2 tháng 3 2023

a.

Phương trình hoành độ giao điểm:

\(x^2+6x+3=-2mx-m^2\Leftrightarrow x^2+2\left(m+3\right)x+m^2+3=0\)

\(\Delta'=\left(m+3\right)^2-\left(m^2+3\right)=6\left(m+1\right)>0\Rightarrow m>-1\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_A+x_B=-2\left(m+3\right)\\x_Ax_B=m^2+3\end{matrix}\right.\)

\(P=10\left(m+3\right)-2\left(m^2+3\right)=-2m^2+10m+24\)

\(P=-2\left(m-\dfrac{5}{2}\right)^2+\dfrac{73}{2}\le\dfrac{73}{2}\)

\(P_{max}=\dfrac{73}{2}\) khi \(m=\dfrac{5}{2}\)

b.

Pt hoành độ giao điểm:

\(x^2-2x-2=x+m\Leftrightarrow x^2-3x-m-2=0\)

\(\Delta=9+4\left(m+2\right)>0\Rightarrow m>-\dfrac{17}{4}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_A+x_B=3\\x_Ax_B=-m-2\end{matrix}\right.\)

Đồng thời \(y_A=x_A+m\) ; \(y_B=x_B+m\)

\(P=OA^2+OB^2=x_A^2+y_A^2+x_B^2+y_B^2\)

\(=x_A^2+x_B^2+\left(x_A+m\right)^2+\left(x_B+m\right)^2\)

\(=2\left(x_A^2+x_B^2\right)+2m\left(x_A+x_B\right)+2m^2\)

\(=2\left(x_A+x_B\right)^2-4x_Ax_B+2m\left(x_A+x_B\right)+2m^2\)

\(=18-4\left(-m-2\right)+6m+2m^2\)

\(=2m^2+10m+26=2\left(m+\dfrac{5}{2}\right)^2+\dfrac{27}{2}\ge\dfrac{27}{2}\)

Dấu "=" xảy ra khi \(m=-\dfrac{5}{2}\)

2 tháng 3 2023

Mình cảm ơn ạ

7 tháng 11

 Bài 1:

a; (\(x+1\)).(\(x+2\)) - (\(x-1\)).(\(x-5\)) = 0

    \(x^2\) + 2\(x\) + \(x+2\) - \(x^2\) + 5\(x\) + \(x\) - 5 = 0

   (\(x^2\) - \(x^2\)) + (2\(x\) + \(x+5x+x\))- (5  -2) = 0

        0 + (3\(x\) + 5\(x\) + \(x\)) + 0 - 3 = 0

                 8\(x\) + \(x\) - 3 = 0

                 9\(x\) = 3

                    \(x=\dfrac{3}{9}\)

Vậy \(x=\dfrac{1}{3}\)

7 tháng 11

b; (2\(x\) - 1)2 + 4.(5 - \(x\)) = 15

     4\(x^2\) - 4\(x\) + 1 + 20 - 4\(x\) = 15

     4\(x^2\) - (4\(x\) + 4\(x\)) + (1 + 20 - 15) = 0

        4\(x^2\) - 8\(x\) + 6 = 0

         4.(\(x^2\) - 2\(x\) + 1) + 2 = 0

         4(\(x-1\))2 + 2 = 0

Vì 4.(\(x-1\))2 ≥ 0 ⇒ 4.(\(x-1\))2 + 2  ≥ 3 > 0 (\(\forall x\))

Vậy không có giá trị nào của \(x\) thỏa mãn đề bài

Kết luận \(x\) \(\in\) \(\varnothing\)

18 tháng 12 2018

\(B1,a,A=x^2-6x+11\)

               \(=\left(x^2-6x+9\right)+2\)

                \(=\left(x-3\right)^2+2\ge2\)

Dấu "=" <=> x=3

Vậy ..........

\(b,B=x^2-20x+101\)

        \(=\left(x^2-20x+100\right)+1\)

         \(=\left(x-10\right)^2+1\ge1\)

Dấu "=" <=> x = 10

Vậy .

\(2,a,A=4x-x^2+3\)

            \(=7-\left(x^2-4x+4\right)\)'

             \(=7-\left(x-2\right)^2\le7\)

Dấu ''='' <=> x = 2

Vậy .

\(b,B=-x^2+6x-11\)

       \(=-2-\left(x^2-6x+9\right)\)

        \(=-2-\left(x-3\right)^2\le-2\)

Dấu ""=" <=> x = 3

Vậy..

13 tháng 11 2021

\(A=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\\ A_{min}=4\Leftrightarrow x=1\\ B=2\left(x^2-3x\right)=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}\\ B=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\\ B_{min}=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\\ C=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\\ C_{max}=7\Leftrightarrow x=2\)

13 tháng 11 2021

a,\(A=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)

Dấu "=" \(\Leftrightarrow x=-1\)

b,\(B=2\left(x^2-3x\right)=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)

Dấu "=" \(\Leftrightarrow x=\dfrac{3}{2}\)

c,\(=C=-\left(x^2-4x-3\right)=-\left[\left(x^2-4x+4\right)-7\right]=-\left(x-2\right)^2+7\le7\)

Dấu "=" \(\Leftrightarrow x=2\)

13 tháng 7 2021

cau A thay = bằng cộng ạ

 

20 tháng 7 2021

a, \(A=-x^2-2x+3=-\left(x^2+2x-3\right)=-\left(x^2+2x+1-4\right)\)

\(=-\left(x+1\right)^2+4\le4\)

Dấu ''='' xảy ra khi x = -1 

Vậy GTLN là 4 khi x = -1 

b, \(B=-4x^2+4x-3=-\left(4x^2-4x+3\right)=-\left(4x^2-4x+1+2\right)\)

\(=-\left(2x-1\right)^2-2\le-2\)

Dấu ''='' xảy ra khi x = 1/2 

Vậy GTLN B là -2 khi x = 1/2 

c, \(C=-x^2+6x-15=-\left(x^2-2x+15\right)=-\left(x^2-2x+1+14\right)\)

\(=-\left(x-1\right)^2-14\le-14\)

Vâỵ GTLN C là -14 khi x = 1

Bài 8 : 

b, \(B=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)

Dấu ''='' xảy ra khi x = 3

Vậy GTNN B là 2 khi x = 3 

c, \(x^2-x+1=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu ''='' xảy ra khi x = 1/2 

Vậy ...

c, \(x^2-12x+2=x^2-12x+36-34=\left(x-6\right)^2-34\ge-34\)

Dấu ''='' xảy ra khi x = 6

Vậy ...