K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2021

Giả sử căn 7 là số hữu tỉ. Khi đó 

\(\sqrt{7}=\dfrac{a}{b}\left(a,b\in N;a,b>0;\left(a,b\right)=1\right)\)

\(\Rightarrow7b^2=a^2\)

\(\Rightarrow a^2⋮7\Rightarrow a⋮7\Rightarrow a^2⋮49\Rightarrow7b^2⋮49\Rightarrow b^2⋮7\Rightarrow b⋮7\\ \Rightarrow\left(a,b\right)⋮7\Rightarrow1⋮7\left(VL\right)\)

=> giả sử sai .

Vậy căn 7 là số vô tỉ

giả sử √7 là số hữu tỉ 
=> √7 = a/b (a,b ∈ Z ; b ≠ 0) 
không mất tính tổng quát giả sử (a;b) = 1 
=> 7 = a²/b² 
<=> a² = b7² 
=> a² ⋮ 7 
7 nguyên tố 
=> a ⋮ 7 
=> a² ⋮ 49 
=> 7b² ⋮ 49
=> b² ⋮ 7
=> b ⋮ 7 
=> (a;b) ≠ 1 (trái với giả sử) 
=> giả sử sai 
=> √7 là số vô tỉ

27 tháng 2 2021

Giả sử \(\sqrt{7}\) là số hữu tỉ 

Ta có :

\(\sqrt{7}=\dfrac{a}{b}\) (a,b nguyên tố cũng nhau)

\(\Leftrightarrow\dfrac{a^2}{b^2}=7\)

\(\Leftrightarrow a^2=7b^2\)

\(\Leftrightarrow a^2⋮7\) Mà 7 là số nguyên tố 

\(\Leftrightarrow a⋮7\) \(\left(1\right)\)

\(\Leftrightarrow a^2⋮49\)

\(\Leftrightarrow7b^2⋮49\)

\(\Leftrightarrow b⋮7\) \(\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow a,b\) không ngto cùng nhau

\(\Leftrightarrow\) Giả sử sai

Vậy..

18 tháng 4 2022

Giả sử \(\sqrt{7}\) là số hữu tỉ \(\Rightarrow\sqrt{7}=\dfrac{m}{n}\left(m,n\in Z;n\ne0\right)\) sao cho \(\left(m,n\right)=1\)

\(\Rightarrow m^2=7n^2\) \(\Rightarrow m^2⋮7\)

Do 7 là số nguyên tố nên \(m⋮7\Rightarrow m=7k\Rightarrow49k^2=7n^2\Rightarrow n^2=7k^2\)

Suy luận như trên ta được \(n⋮7\)

\(\Rightarrow7\inƯC\left(m,n\right)\) (mâu thuẫn giả thiết \(\left(m,n\right)=1\))

Vậy \(\sqrt{7}\) là số vô tỉ

18 tháng 4 2022

Giả sử phản chứng √7 là số hữu tỉ ⇒ √7 có thể biểu diễn dưới dạng phân số tối giản m/n  √7= m/n  ⇒ 7 = m²/n²  ⇒ m² =7n²  ⇒ m² chia hết cho n²  ⇒ m chia hết cho n (vô lý vì m/n là phân số tối giản nên m không chia hết cho n)  Vậy giả sử phản chứng là sai. Suy ra √7 là số vô tỉ.

24 tháng 9 2023

Giả sử \(\sqrt{7}\) là số hữu tỉ

=> \(\sqrt{7}=\dfrac{m}{n}\)(Tối giản)

=> 7=\(\dfrac{m^2}{n^2}\)hay 7n2=m2(1)

Đẳng thức này chứng tỏ m2\(⋮7\)mà 7 là số nguyên tố nên \(m⋮7\).

Đặt m=7k (\(k\in Z\)), ta có m2=49k2(2)

Từ (1) và (2) suy ra 7n2=49knên n2=7k2(3)

Từ (3) ta lại có \(n^2⋮7\)và vì 7 là số nguyên tố nên n⋮7. m và n cùng chia hết cho 7 nên phân số \(\dfrac{m}{n}\)không tối giản, trái giả thiết.

Vậy \(\sqrt{7}\) không phải số hữu tỉ; do đó \(\sqrt{7}\) là số vô tỉ.

24 tháng 9 2023

Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức : S = x2 + y2
 

Chị làm được bài này ko ạk?

 

 

 

 

20 tháng 10 2019

                                                      Bài giải

a, Ta có :

\(\sqrt{2}\) là số vô tỉ \(\Rightarrow\) \(7-\sqrt{2}\) là số vô tỉ

b, Ta có :

\(\sqrt{5}\)là số vô tỉ \(\Rightarrow\sqrt{5}+24\) là số vô tỉ

22 tháng 10 2019

♥๖Lan_Phương_cute#✖#girl_học_đường๖ۣۜ💋:))♥。◕‿◕。

chứng minh them \(\sqrt{2}\)\(\sqrt{5}\) là số vô tỉ nữa ! Vào đây tham khảo :

https://olm.vn/hoi-dap/detail/227642288657.html

7 tháng 1 2019

bn nè căn 7 là số vô tỉ vì căn 7 =2,tá lả tùm lum tùm lum tá lả...............

30 tháng 11 2020

- Giả sử \(\sqrt{7}\)là số hữu tỉ 

\(\Rightarrow\sqrt{7}=\frac{m}{n}\)tối giản 

\(\Rightarrow7=\frac{m^2}{n^2}\)hay \(7n^2=m^2\left(1\right)\)

Đẳng thức này chính tỏ \(m^2⋮7\)mà 7 là số nguyên tố => m chia hết cho 7 

- Đặt \(m=7k\left(k\in Z\right)\), ta có : \(m^2=49k^2\left(2\right)\) 

Từ (1) và (2) suy ra : \(7n^2=49k^2\)nên \(n^2=7k^2\left(3\right)\)

Từ (3) ta lại có \(n^2⋮7\)và vì 7 là số nguyên nên \(n⋮7\)

- m và n cùng chia hết cho 7 nên phân số \(\frac{m}{n}\)không tối giản ( trái với giả thiết )

\(\Rightarrow\sqrt{7}\)không phải là số hữu tỉ , mà là số vô tỉ 

28 tháng 10 2017

Vì 7 là số nguyên tố \(\Rightarrowđpcm\)

28 tháng 10 2017

Giả sử phản chứng \(\sqrt{7}\)là số hữu tỉ\(\Rightarrow\) \(\sqrt{7}\)có thể viết dưới dạng phân số tối giản\(\frac{m}{n}\)

\(\sqrt{7}=\frac{m}{n}\)

\(\Rightarrow\)7=\(\frac{m^2}{n^2}\)

\(\Rightarrow m^2=7n^2\)

\(\Rightarrow m^2⋮n^2\)

\(\Rightarrow m⋮n\)( Vô lý vì \(\frac{m}{n}\)là phân số tối giản nên m không chia hết cho n)

Vậy giả sử phản chứng là sai. Suy ra\(\sqrt{7}\)là số vô tỉ

19 tháng 10 2017

 giả sử √7 là số hữu tỉ 
=> √7 = a/b (a,b ∈ Z ; b ≠ 0) 
không mất tính tổng quát giả sử (a;b) = 1 
=> 7 = a²/b² 
<=> a² = 7b² 
=> a² ⋮ 7 
Vì số 7 là số nguyên tố 
=> a ⋮ 7 
=> a² ⋮ 49 
=> 7b² ⋮ 49 
=> b² ⋮ 7 
=> b ⋮ 7 
=> (a;b) ≠ 1 (trái với giả sử) 
=> giả sử sai 
=> √7 là số vô tỉ

Mình đánh trong Word nên phông hơi khác, thông cảm nha

5 tháng 12 2017
 

Giả sử phản chứng √7 là số hữu tỉ ⇒ √7 có thể biểu diễn dưới dạng phân số tối giản m/n 
√7 = m/n 
⇒ 7 = m²/n² 
⇒ m² = 7n² 
⇒ m² chia hết cho n² 
⇒ m chia hết cho n (vô lý vì m/n là phân số tối giản nên m không chia hết cho n) 
Vậy giả sử phản chứng là sai. Suy ra √7 là số vô tỉ.

22 tháng 11 2017

Giả sử \(\sqrt{3}\)là một số hữu tỉ 

\(\Rightarrow\sqrt{3}=\frac{a}{b}\left(a;b\ne0\right);ƯCLN\left(a,b\right)=1 \)

\(\Rightarrow3=\frac{a^2}{b^2}\)

Ta có : \(a^2=3b^2\).Mà 3 là một số nguyên tố 

=> \(a^2⋮3\Leftrightarrow a⋮3\)

Vì \(a⋮3\).=> Đặt a= 3k

=>a2 = 9k2

Thay vào ta có : 

\(3=\frac{a^2}{b^2}\)

\(\Rightarrow b^2=9k^2:3\)

\(\Rightarrow b^2=3k^2\).Vì 3 là số nguyên tố 

\(\Rightarrow b^2⋮3\Leftrightarrow b⋮3\)

Vì \(a⋮3;b⋮3\)trái với UWCLN(a,b) =1

=> \(\sqrt{3}\)là một số vô tỉ

22 tháng 11 2017

thank bạn nha