Cho \(\widehat{AOB}\)= 1200 , OM là tia phân giác của \(\widehat{AOB}\). Vẽ tia OC nằm trong \(\widehat{BOM}\), tia OD nằm trong \(\widehat{AOM}\)sao cho \(\widehat{BOC}=\widehat{MOD}\). Tính \(\widehat{COD}\)
GIÚP TỚ ĐI :33
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Trên cùng một nửa mặt phẳng bờ chứa tia Oa, ta có: \(\widehat{aOc}< \widehat{aOb}\left(50^0< 120^0\right)\)
nên tia Oc nằm giữa hai tia Oa và Ob
\(\Leftrightarrow\widehat{aOc}+\widehat{bOc}=\widehat{aOb}\)
\(\Leftrightarrow\widehat{bOc}=\widehat{aOb}-\widehat{aOc}=120^0-50^0=70^0\)
Ta có: Om là tia phân giác của \(\widehat{bOc}\)(gt)
nên \(\widehat{bOm}=\dfrac{\widehat{bOc}}{2}=\dfrac{70^0}{2}\)
hay \(\widehat{bOm}=35^0\)
Vậy: \(\widehat{bOm}=35^0\)
ta co AOB+BOC=160(1)
Va AOB-BOC=100(2)
Cong (1) va (2) ta co
(AOB+BOC)+(AOB-BOC)=160+100
2AOB=260
AOB=130
Lai co AOB+BOC=160
Hay 130+BOC=160
BOC=30
a, Trong ba tia OA, OM, ON tia OM nằm giữa hai tia OA và ON
b, Ta có \(\widehat{AOB}=\widehat{AOM}+\widehat{MON}+\widehat{BON}\)
\(=40^o+30^o+50^o\)
\(=120^o\)
Nhớ k cho mình nhé
mik nhớ là. hai góc kề bù thì thường là 180 độ, s lại là 160 đọ nhỉ, sai đề
ta có: AOB+BOC=160O
→AOB+(AOC+1000)= 160O+1000=2600
HAY 2AOB=2600
→AOB=1300
BOC=300
B, vi tia OD thuoc goc AOB →OB nam giua OC VA OD
vi BOC=300 MA DOC= 900
→OB ko phai la tia phan giac cua BOC
c,