Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tự zẽ hình nha
ta có\(\widehat{bOc}=\widehat{bOa}-\widehat{cOa}\)
=>\(\widehat{bOc}=120^0-100^0=20^0\)
b)\(tacó\hept{\begin{cases}\widehat{bOm}=\widehat{bOa}-\widehat{mOa}=120^0-110^0=10^0\\\widehat{mOc}=\widehat{mOa}-\widehat{cOa}=120^0-110^0=10^0\end{cases}}\)
=>\(\widehat{bOm}=\widehat{mOc}\left(1\right)\)
ta lại có \(\widehat{bOa}>\widehat{mOc}>\widehat{cOa}\)
=>\(mO\)nằm giữa 2 tia \(Ob\)zà \(Oc\left(2\right)\)
từ 1 zà 2 suy ra
mO là tia phân giác của góc \(bOc\)
1) \(\frac{145.146-15}{145.145+130}=\frac{145.145+145-15}{145.145+130}=\frac{145.145+130}{145.145+130}=1\)
2) \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{31.34}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{31}-\frac{1}{34}=1-\frac{1}{34}=\frac{33}{34}\)
Bạn tự vẽ hình nha
Bài giải
a, Tia OC là tia phân giác của \(\widehat{AOB}\)
\(\Rightarrow\widehat{AOC}=\widehat{COB}=100^0:2=50^0\)
Mà : \(\widehat{COE}=\widehat{COB}-\widehat{BOE}=50^0-20^0=30^0\)
\(\Rightarrow\widehat{AOE}=\widehat{AOC}+\widehat{COE}=50^0+30^0=80^0\)
\(\Rightarrow\widehat{COD}=\widehat{AOC}-\widehat{AOD}=50^0-20^0=30^0\)
b, Ta có : \(\widehat{DOE}=\widehat{DOC}+\widehat{COE}=30^0+30^0=60^0\)
c, Ta có : \(\widehat{DOC}=\widehat{COE}=30^0\)
=> Tia OC là tia phân giác của góc \(\widehat{EOD}\)
O B E C D A
a, Tia OC là tia phân giác của \(\widehat{AOB}\)
\(\Rightarrow\widehat{AOC}=\widehat{COB}=100^0:2=50^0\)
Mà :\(\widehat{COE}=\widehat{COB}-\widehat{BOE}=50^0-20^0=30^0\)
\(\Rightarrow\widehat{AOE}=\widehat{AOC}+\widehat{COE}=50^0+30^0=80^0\)
\(\Rightarrow\widehat{COD}=\widehat{AOC}-\widehat{AOD}=50^0-20^0=30^0\)
b, Ta có : \(\widehat{DOE}=\widehat{DOC}+\widehat{COE}=30^0+30^0=60^0\)
c, Ta có : \(\widehat{DOC}=\widehat{COE}=30^0\)
=> Tia OC là tia phân giác của \(\widehat{EOD}\)
a) Trên cùng một nửa mặt phẳng bờ chứa tia Oa, ta có: \(\widehat{aOc}< \widehat{aOb}\left(50^0< 120^0\right)\)
nên tia Oc nằm giữa hai tia Oa và Ob
\(\Leftrightarrow\widehat{aOc}+\widehat{bOc}=\widehat{aOb}\)
\(\Leftrightarrow\widehat{bOc}=\widehat{aOb}-\widehat{aOc}=120^0-50^0=70^0\)
Ta có: Om là tia phân giác của \(\widehat{bOc}\)(gt)
nên \(\widehat{bOm}=\dfrac{\widehat{bOc}}{2}=\dfrac{70^0}{2}\)
hay \(\widehat{bOm}=35^0\)
Vậy: \(\widehat{bOm}=35^0\)