Giúp mình bài này với!
Tính : P= (1+1/1×3)×(1+1/2×4)×...×(1+1/99×101
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số số hạng của dãy số trên là :
( 101 - 1 ) : 1 +1 = 101 ( số )
tổng trên là :
( 101 + 1 ) x 101 : 2 = 5151
Đáp số 5151
k tin thì bấm máy !! ( dại ) \
Tk nha !!
c)
\(\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+....+\left(1-\frac{1}{42}\right)+\left(1-\frac{1}{56}\right)\)
\(\left(1+1+1+....+1+1\right)+\left(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{6\times7}+\frac{1}{7\times8}\right)\)(Có 7 số 1)
\(7+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(7+1-\frac{1}{8}=\frac{63}{8}\)
Gợi ý 1 bài c) còn d) e) cũng làm như vậy nhé
Chúc bạn học tốt !!!
Đặt A=1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100
4A=(1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100)4
4A=1.2.3(4-0)+2.3.4(5-1)+3.4.5(6-2)+4.5.6(7-3)+...+98.99.100(101-97)
4A=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+4.5.6.7-3.4.5.6+...+98.99.100.101-97.98.99.100
4A=1.2.3.4-1.2.3.4+2.3.4.5-2.3.4.5+3.4.5.6-3.4.5.6+...+97.98.99.100-97.98.99.100+98.99.100.101
4A=98.99.100.101
=>A=98.99.100.101/4
=> A=24497550
Bài làm:
\(A=\frac{101+100+99+...+3+2+1}{101-100+99-98+...+3-2+1}=\frac{\left(101+1\right).101\div2}{\left(101-100\right)+\left(99-98\right)+...+\left(3-2\right)+1}\)
\(A=\frac{5151}{1+1+...+1+1}=\frac{5151}{51}=101\)(51 số hạng 1)
Ta có:
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
Ta có: \(\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\right).x=\frac{3}{4}\)
\(2.\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\right).x=2.\frac{3}{4}\)
\(\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right).x=\frac{3}{2}\)
\(\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right).x=\frac{3}{2}\)
\(\left(1-\frac{1}{101}\right).x=\frac{3}{2}\)
\(\frac{100}{101}.x=\frac{3}{2}\)
\(x=\frac{3}{2}:\frac{100}{101}\)
\(x=\frac{303}{200}\)
Ta có: \(\dfrac{101+100+99+...+3+2+1}{101-100+99-98+...+3-2+1}\)
\(=\dfrac{101+\left(100+1\right)\cdot50}{101-\left[100-99+98-97+...+2-1\right]}\)
\(=\dfrac{101\cdot51}{101-1\cdot50}\)
\(=\dfrac{101\cdot51}{101-50}=101\)
\(\frac{2}{1.2}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{99.101}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)