Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số các số hạng là : ( 99 - 1 ) : 1 +1 = 99 ( số )
Tổng là : ( 99 + 1 ) . 99 : 2 = 4950
Vậy, B = 4950
số số hạng của B là :
( 99 - 1 ) : 1 + 1 = 99 ( số )
tổng B là :
( 99 + 1 ) . 99 : 2 = 4950
Vậy ...
\(\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}}{\dfrac{1}{1\cdot99}+\dfrac{1}{3\cdot97}+\dfrac{1}{5\cdot95}+...+\dfrac{1}{97\cdot3}+\dfrac{1}{99\cdot1}}\)
\(=\dfrac{\left(1+\dfrac{1}{99}\right)+\left(\dfrac{1}{97}+\dfrac{1}{3}\right)+...+\left(\dfrac{1}{49}+\dfrac{1}{51}\right)}{\left(\dfrac{1}{1\cdot99}+\dfrac{1}{99\cdot1}\right)+\left(\dfrac{1}{97\cdot3}+\dfrac{1}{97\cdot3}\right)+...+\left(\dfrac{1}{51\cdot49}+\dfrac{1}{49\cdot51}\right)}\)
\(=\dfrac{\dfrac{100}{99}+\dfrac{100}{97\cdot3}+...+\dfrac{100}{49\cdot51}}{\dfrac{2}{1\cdot99}+\dfrac{2}{97\cdot3}+...+\dfrac{2}{51\cdot49}}\)
\(=\dfrac{100\cdot\left(\dfrac{1}{99}+\dfrac{1}{97\cdot3}+...+\dfrac{1}{49\cdot51}\right)}{2\cdot\left(\dfrac{1}{99}+\dfrac{1}{97\cdot3}+...+\dfrac{1}{49\cdot51}\right)}\)
\(=\dfrac{100}{2}\)
\(=50\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}{\frac{101}{1}+\frac{100}{2}+\frac{99}{3}+...+\frac{1}{101}}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}{\left(\frac{100}{2}+1\right)+\left(\frac{99}{3}+1\right)+...+\left(\frac{1}{101}+1\right)+1}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}{\frac{102}{2}+\frac{102}{3}+...+\frac{102}{101}+\frac{102}{102}}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}{102.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}+\frac{1}{102}\right)}\)
\(A=\frac{1}{102}\)