Cho hình chữ nhật MNPQ. Gọi H là hình chiếu của M trên đường chéo NQ, K là trung điểm của HN
a) Chứng minh: Tg NMH đồng dạng với tg NQM
b) Chứng minh: PQ^2=NH.NQ
c) Gọi I là trung điểm của PQ. Tính góc MKI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔNMH vuông tại H và ΔNQM vuông tại M có
góc MNH chung
=>ΔNMH đồng dạng với ΔNQM
b: ΔNMH đồng dạng với ΔNQM
=>NH/NM=NM/NQ
=>NM^2=NH*NQ=PQ^2
c: Gọi A là trung điểm của HM
Xét ΔHMN có HK/HN=HA/HM=1/2
nên AK//MN và AK=1/2MN
=>AK//QI và AK=QI
=>AKIQ là hình bình hành
=>KA//QI
=>KA vuông góc MQ
Xét ΔMQK có
KA,MH là đường cao
KA cắt MH tại A
=>A là trực tâm
=>QA vuông góc MK
=>KI vuông góc KM
=>góc MKI=90 độ
a: Xét tứ giác MNIH có
MH//NI
MN//IH
góc MHI=90 độ
Do đó: MNIH là hình chữ nhật
b: Xét ΔMHQ vuông tại H và ΔNIP vuông tại I có
MQ=NP
góc Q=góc P
Do đó: ΔMHQ=ΔNIP
=>QH=IP
c: Xét ΔMKQ có
MH vừa là đường cao, vừa là trung tuyến
nên ΔMKQ cân tại M
=>góc MQK=góc MKQ=góc P
=>MK//NP
mà MN//KP
nên MNPK là hình bình hành
=>MP cắt NK tại trung điểm của mỗi đường
=>M,E,P thẳng hàng
a: Xet tứ giác MPNQ có
I là trung điểm chung của MN và PQ
nên MPNQ là hình bình hành
b:M đối xứng K qua PQ
nên MK vuông góc với PQ tại trung điểm của MK
=>H là trung điểm của MK
Xét ΔMKN có MH/MK=MI/MN
nên HI//KN
=>KN vuông góc với KM
c: M đối xứng K qua PQ
nên QM=QK
=>QK=PN
Xét tứ giác PQNK có
PQ//NK
PN=QK
Do đó: PQNK là hình thang cân
lỗi