b) ( 192005 + 112006) chia hết 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
B = 1 + 2 + 3 + 4 + ... + 2001
= (2001 + 1) . (2001 - 1 + 1) : 2
= 2002 . 2001 : 2
= 2003001
Vậy B không chia hết cho 2
Bài 2:
*) Số 10¹⁰ + 8 = 10000000008
- Có chữ số tận cùng là 8 nên chia hết cho 2
- Có tổng các chữ số là 1 + 8 = 9 nên chia hết cho cả 3 và 9
Vậy 10¹⁰ + 8 chia hết cho cả 2; 3 và 9
*) 10¹⁰⁰ + 5 = 1000...005 (99 chữ số 0)
- Có chữ số tận cùng là 5 nên chia hết cho 5
- Có tổng các chữ số là 1 + 5 = 6 nên chia hết cho 3
Vậy 10¹⁰⁰ + 5 chia hết cho cả 3 và 5
b) 10⁵⁰ + 44 = 100...0044 (có 48 chữ số 0)
- Có chữ số tận cùng là 4 nên chia hết cho 2
- Có tổng các chữ số là 1 + 4 + 4 = 9 nên chia hết cho 9
Vậy 10⁵⁰ + 44 chia hết cho cả 2 và 9
B1 :
\(B=1+2+3+4+...+2001\)
\(B=\left[\left(2001-1\right):1+1\right]\left(2001+1\right):2\)
\(B=2001.2002:2=2003001\)
- Tận cùng là 1 nên B không chia hết cho 2
- Tổng các chữ số là 2+3+1=6 chia hết cho 3 nên B chia hết cho 3, không chia hết ch0 9
- Ta lấy \(2.3=6+0=6.3+0-14=4.3+3-14=1.3+0=3.3+0-7=2.3+1=7⋮7\) \(\Rightarrow B⋮7\)
Bài 5:
b: Ta có: \(n+6⋮n+2\)
\(\Leftrightarrow n+2\in\left\{2;4\right\}\)
hay \(n\in\left\{0;2\right\}\)
c: Ta có: \(3n+1⋮n-2\)
\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)
hay \(n\in\left\{1;3;9\right\}\)
n + 3 chia hết choi n + 1
n + 1+ 2 chia hết cho n +1
2 chia hế cho n + 1
n + 1 thuộc U(2) = {-2 ; -1 ; 1 ; 2}
n + 1 = -2 =>? n = -3
n + 1= -1 => n = -2
n + 1 = 1 => n = 0
n + 1 = 2 => n = 1
a) - Xét trường hợp chia hết cho 2
+ Vì n và n + 1 là hai số liên tiếp nên n.(n+1).(2n+1) chia hết cho 2.
- Xét trường hợp chia hết cho 3.
+ Nếu n chia hết cho 3 thì n.(n+1).(2n+1) chia hết cho 3
+ Nếu n chia 3 dư 1 thì 2n + 1 chia hết cho 3 => n.(n+1).(2n+1) chia hết cho 3.
+ Nếu n chia 3 dư 2 thì n + 1 chia hết cho 3 => n.(n+1).(2n+1) chia hết cho 3.
Vậy n.(n+1).(2n+1) chia hết cho 2.
Mà n.(n+1).(2n+1) chia hết cho 3 và 2 => n.(n+1).(2n+1) chia hết cho 6 (đpcm)
b) 10^9 + 2 = 100.....02.
Tổng các chữ số của số trên là: 1 + 0 + 0 + 0 +... + 0 + 2 = 3 => 10^9+2 chia hết cho 3(đpcm)
c) 10^10 - 1 = 99...99
Vì các chữ số của số trên đều là 9 => Nó chia hết cho 9 => 10^10 - 1 chia hết cho 9 (đpcm)
d) 10^8 - 1 = 99...9
Vì các chữ số của số trên đều là 9 => Nó chia hết cho 9 => 10^10 - 1 chia hết cho 9 (đpcm)
E) 10^8 + 8 = 10...08
Tổng các chữ số của số trên là: 1 + 0 + 0 +... + 0 + 8 = 9 => Nó chia hết cho 9 => 10^8 + 8 chia hết cho 9 (đpcm)
a) \(7^6+7^5-7^4=\left(7^4.7^2\right)+\left(7^3.7^2\right)-\left(7^2.7^2\right)=7^2\left(7^4+7^3+7^2\right)=7^2.1793\)
Mà 1793 chia hết cho 11 => 72.1793 chia hết cho 11
a/
\(A=4^2.4^{37}+4^2.4^{38}+4^2.4^{39}=4^2\left(4^{37}+4^{38}+4^{39}\right)=\)
\(=2.8.\left(4^{37}+4^{38}+4^{39}\right)⋮8\)
b/
\(B=10^7\left(1+10+10^2\right)=10.10^6.111=\)
\(=5.10^6.222⋮222\)
c/
\(C=5^{2006}\left(1+5+5^2\right)=5^{2006}.31⋮31\)
a) A=105+35 = 100000+ 35 = 100035
Mà 1+0+0+0+3+5=9 chia hết cho 9
=>A chia hết cho 9
A=105+35=100000 + 35 = 100035
Vì có c/s tận cùng là 5 nên A chia hết cho 5
b) B=105+98 = 100000+98 = 100098
Vì có c/s tận cùng là 8 nên B chia hết cho 2
B=105+98 = 100000+98=100098
Mà 1+0+0+0+9+8 = 18 chia hết cho 9
=>B chia hết cho 9
Chữ số tận cùng là 0 nên chia hết cho 10