K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2023

Bài 1:

B = 1 + 2 + 3 + 4 + ... + 2001

= (2001 + 1) . (2001 - 1 + 1) : 2

= 2002 . 2001 : 2

= 2003001

Vậy B không chia hết cho 2

Bài 2:

*) Số 10¹⁰ + 8 = 10000000008

- Có chữ số tận cùng là 8 nên chia hết cho 2

- Có tổng các chữ số là 1 + 8 = 9 nên chia hết cho cả 3 và 9

Vậy 10¹⁰ + 8 chia hết cho cả 2; 3 và 9

*) 10¹⁰⁰ + 5 = 1000...005 (99 chữ số 0)

- Có chữ số tận cùng là 5 nên chia hết cho 5

- Có tổng các chữ số là 1 + 5 = 6 nên chia hết cho 3

Vậy 10¹⁰⁰ + 5 chia hết cho cả 3 và 5

b) 10⁵⁰ + 44 = 100...0044 (có 48 chữ số 0)

- Có chữ số tận cùng là 4 nên chia hết cho 2

- Có tổng các chữ số là 1 + 4 + 4 = 9 nên chia hết cho 9

Vậy 10⁵⁰ + 44 chia hết cho cả 2 và 9

10 tháng 8 2023

B1 :

\(B=1+2+3+4+...+2001\)

\(B=\left[\left(2001-1\right):1+1\right]\left(2001+1\right):2\)

\(B=2001.2002:2=2003001\)

- Tận cùng là 1 nên B không chia hết cho 2

- Tổng các chữ số là 2+3+1=6 chia hết cho 3 nên B chia hết cho 3, không chia hết ch0 9

- Ta lấy \(2.3=6+0=6.3+0-14=4.3+3-14=1.3+0=3.3+0-7=2.3+1=7⋮7\) \(\Rightarrow B⋮7\)

 

20 tháng 12 2018

Ý bạn lak như thế này hả ???

A = \(2+2^2+2^3+...+2^{20}\)

A = \(\left(2+2^2+2^3+2^4\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\)

A = \(2\left(1+2+2^2+2^3\right)+...+2^{17}\left(1+2+2^2+2^3\right)\)

A = \(2.15+...+2^{17}.15\)

A = \(15\left(2+...+2^{17}\right)⋮5\left(đpcm\right)\)

Hok tốt

16 tháng 10 2019

{220-20}:5=40

16 tháng 12 2016

\(A=3+3^2+3^3+3^4+...+3^{10}\)

=> \(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^9+3^{10}\right)\)

=> \(A=3\left(1+3\right)+3^3\left(1+3\right)+...+3^9\left(1+3\right)\)

=> \(A=3.4+3^3.4+...+3^9.4\)

=> \(A=4\left(3+3^3+...+3^9\right)\)chia hết cho 4 (Đpcm)

16 tháng 12 2016

A = 3 + 32 + 33 + ... + 39 + 310

=> A = ( 3 + 32 ) + ( 33 + 34 ) + ... + ( 39 + 310 )

=> A = 3( 1 + 3 ) + 33( 1 + 3 ) + ... + 39( 1 + 3 )

=> A = 3 . 4 + 33 . 4 + ... + 39 . 4

=> A = ( 3 + 33 + ... + 39 ) . 4 chia hết cho 4

=> A chia hết cho 4

Vậy...

12 tháng 11 2015

a.6370;276

b.6370

c.217;909

10 tháng 11 2021

\(A=2+2^2+2^3+2^4+.....2^{100}\)

\(=2.3+2^3.3+....2^{99}.3\)

\(=6\left(1+2^2+....2^{98}\right)⋮6\)

29 tháng 4 2018

â) Ta có : \(2n-1⋮n+1\Leftrightarrow2n+2-2-1⋮n+1\)

              \(\Leftrightarrow2\left(n+1\right)-2-1⋮n+1\)\(\Leftrightarrow2\left(n+1\right)-3⋮n+1\)

               \(\Leftrightarrow2n-1⋮n+1\)khi  \(3⋮n+1\Rightarrow n+1\in\)Ước của \(3\)                            \

                \(\Leftrightarrow n+1\in\left(1;-1;3;-3\right)\)

                 \(\Leftrightarrow n\in\left(0;-2;2;-4\right)\)

Vậy \(n\in\left(-4;-2;0;2\right)\)

b) Ta có :\(9n+5⋮3n-2\Rightarrow3\left(3n-2\right)+6+5⋮3n-2\)

               \(\Rightarrow3\left(3n-2\right)+11⋮3n-2\)

               \(\Rightarrow9n+5⋮3n-2\)Khi \(11⋮3n-2\)

               \(\Rightarrow3n-2\in U\left(11\right)\)

               \(\Rightarrow3n-2\in\left(-11;-1;1;11\right)\)

               \(\Rightarrow n\in\left(-3;1;\right)\)

Phần c) bạn tự  làm nhé!

18 tháng 2 2017

\(x+1-5⋮x+1\)

\(\Rightarrow5⋮x+1\)

\(\Rightarrow x+1=1;5;-1;-5\)

Đến đây thì dễ rồi tự lập bảng rồi tính

27 tháng 9 2021

các bạn giúp mình với

27 tháng 9 2021

Viết rõ đầu bài ra đi em . chứ nhìn ko hiểu j cả

DD
28 tháng 9 2021

\(B=3^2+3^3+...+3^{99}\)

\(3B=3^3+3^4+...+3^{100}\)

\(3B-B=\left(3^3+3^4+...+3^{100}\right)-\left(3^2+3^3+...+3^{99}\right)\)

\(2B=3^{100}-3^2\)

\(B=\frac{3^{100}-9}{2}\)

\(2B+9=3^{2n+4}\)

\(\Leftrightarrow3^{2n+4}=3^{100}\)

\(\Leftrightarrow2n+4=100\)

\(\Leftrightarrow n=48\).

27 tháng 7 2018

\(A=\left\{150;155;160;165;...;920;925\right\}\)

- Số phần tử của A là : \(\left(925-150\right):5+1=156\)( phần tử )

=> A có 156 phần tử

Học tốt @_@