K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2020

Bài 1:

a) \(\hept{\begin{cases}\left(x-\frac{2}{5}\right)^{2010}\ge0\left(\forall x\right)\\\left(y+\frac{3}{7}\right)^{468}\ge0\left(\forall y\right)\end{cases}}\Rightarrow\left(x-\frac{2}{5}\right)^{2010}+\left(y+\frac{3}{7}\right)^{468}\ge0\left(\forall x,y\right)\)

Kết hợp với đề bài, dấu "=" xảy ra khi:

\(\hept{\begin{cases}\left(x-\frac{2}{5}\right)^{2010}=0\\\left(y+\frac{3}{7}\right)^{468}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=-\frac{3}{7}\end{cases}}\)

b) \(\hept{\begin{cases}\left(x+0,7\right)^{84}\ge0\left(\forall x\right)\\\left(y-6,3\right)^{262}\ge0\left(\forall y\right)\end{cases}\Rightarrow}\left(x+0,7\right)^{84}+\left(y-6,3\right)^{262}\ge0\left(\forall x,y\right)\)

Kết hợp với đề bài, dấu "=" xảy ra khi:

\(\hept{\begin{cases}\left(x+0,7\right)^{84}=0\\\left(y-6,3\right)^{262}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-0,7\\y=6,3\end{cases}}\)

c) \(\hept{\begin{cases}\left(x-5\right)^{88}\ge0\left(\forall x\right)\\\left(x+y+3\right)^{496}\ge0\left(\forall x,y\right)\end{cases}\Rightarrow}\left(x-5\right)^{88}+\left(x+y+3\right)^{496}\ge0\left(\forall x,y\right)\)

Kết hợp với đề bài, dấu "=" xảy ra khi:

\(\hept{\begin{cases}\left(x-5\right)^{88}=0\\\left(x+y+3\right)^{496}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=5\\y=-8\end{cases}}\)

16 tháng 8 2020

Bài 2:

Theo giả thiết ta có thể suy ra: \(x>y\)

Ta có: \(2^x-2^y=224\)

\(\Leftrightarrow2^y\left(2^{x-y}-1\right)=224=32.7=2^5.7\)

Mà \(2^{x-y}-1\) luôn lẻ với mọi x,y nguyên

=> \(\hept{\begin{cases}2^{x-y}-1=7\\2^y=2^5\end{cases}\Leftrightarrow}\hept{\begin{cases}2^{x-y}=8=2^3\\y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=8\\y=5\end{cases}}\)

19 tháng 7 2020

Bài làm

Vì ( 2x - 1 )/( 2 - x ) ≤ 0.

=> 2x - 1 và 2 - x trái dấu 

Trường hợp 1: 2x - 1 ≤ 0 => x ≤ 1/2.  ( Loại )

                           2 - x ≥ 0 => x ≤ 2 ( loaj )

Trường hợp 2: 2x - 1 ≥ 0 => x ≥ 1/2

                          2 - x ≤ 0 => x ≤ 2 

=> 1/2 ≤ x ≤ 2 ( chọn )

Vậy x sẽ là 1/2 ≤ x ≤ 2

19 tháng 7 2020

\(\frac{2x-1}{2-x}\le0\)

=> 2x-1 và 2-x khác dấu 

\(th1\orbr{\begin{cases}2x-1\ge0\\2-x\le0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x\ge1\\x\le2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\ge\frac{1}{2}\\x\le2\end{cases}}}\Leftrightarrow\frac{1}{2}\le x\le2\left(tm\right)\)

\(th2\orbr{\begin{cases}2x-1\le0\\2-x\ge0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x\le1\\x\ge2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\le\frac{1}{2}\\x\ge2\end{cases}}}\Leftrightarrow2\le x\le\frac{1}{2}\left(ktm\right)\)

vậy với \(\frac{1}{2}\le x\le2\)thì \(\frac{2x-1}{2-x}\le0\)

10 tháng 9 2017

vì \(\left|1-x\right|+\left|y-\frac{2}{3}\right|+\left|x+z\right|\ge0\) (với mọi x,y,z) 

nên kết hợp đề bài => \(\hept{\begin{cases}\left|1-x\right|=0\\\left|y-\frac{2}{3}\right|=0\\\left|x+z\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{2}{3}\\z=-1\end{cases}}}\)

12 tháng 9 2017

hay qua Han oi, nay len online math hoi lun

7 tháng 6 2016

a). Nhận xét rằng từng số hạng của tổng vế phải (VP) đều >=0 nên VP >= 0. Để dấu "=" xảy ra thì từng số hạng trong tổng VP đều bằng 0. Do đó ta có: x= 1/2; y=-3/2; z=-3/2.

b) Tương tự, VP>=0 để VP<=0 = VT chỉ xảy ra khi đạt dấu "=". Cho từng số hạng của VP =0, ta được: x=1; y=2/3; z=-1.

NV
3 tháng 4 2020

a/

\(\Leftrightarrow\frac{\left(x^2-1\right)\left(x^2+1\right)}{x^2+3x}+x^2-1\ge0\)

\(\Leftrightarrow\left(x^2-1\right)\left(\frac{x^2+1}{x^2+3x}+1\right)\ge0\)

\(\Leftrightarrow\left(x^2-1\right)\left(\frac{2x^2+3x+1}{x^2+3x}\right)\ge0\)

\(\Leftrightarrow\frac{\left(x-1\right)\left(x+1\right)\left(x+1\right)\left(2x+1\right)}{x\left(x+3\right)}\ge0\)

\(\Leftrightarrow\frac{\left(x-1\right)\left(2x+1\right)\left(x+1\right)^2}{x\left(x+3\right)}\ge0\)

\(\Rightarrow\left[{}\begin{matrix}x< -3\\x=-1\\-\frac{1}{2}\le x< 0\\x\ge1\end{matrix}\right.\)

NV
3 tháng 4 2020

b/

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)\left(\frac{-2-2x}{x}\right)\le0\)

\(\Leftrightarrow\frac{-2.\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)\left(x+1\right)}{x}\le0\)

\(\Leftrightarrow\frac{\left(x+2\right)\left(x-1\right)\left(x-2\right)\left(x+1\right)^2}{x}\ge0\)

\(\Rightarrow\left[{}\begin{matrix}x\le-2\\x=-1\\0< x\le1\\x\ge2\end{matrix}\right.\)

c/

\(\Leftrightarrow\left(\frac{4\left(x-1\right)-2x}{x\left(x-1\right)}\right)\left(\frac{x^2+1-2x}{x}\right)\le0\)

\(\Leftrightarrow\frac{\left(2x-4\right)\left(x-1\right)^2}{x^2\left(x-1\right)}\le0\)

\(\Leftrightarrow\frac{\left(x-2\right)\left(x-1\right)^2}{x^2\left(x-1\right)}\le0\)

\(\Rightarrow1< x\le2\)