Chứng tỏ rằng:
(1-1/3).(1-1/6).(1-1/10).(1-1/15)...(1-1/253)<2/5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a, Ta có: \(A=\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+...+\frac{1}{22}>\frac{1}{22}+\frac{1}{22}+\frac{1}{22}+\frac{1}{22}+...+\frac{1}{22}=\frac{1}{22}.11=\frac{11}{22}=\frac{1}{2}\)
Vậy: \(A>\frac{1}{2}\)
b, Ta có: \(B=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{99}+\frac{1}{100}\)
\(=\left(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{49}+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\right)\)
Mà: \(\left(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{49}+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\right)\text{}\text{}\text{}>\left(\frac{1}{50}+...+\frac{1}{50}+\frac{1}{50}\right)+\left(\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\right)\)
=> \(B\text{}\text{}\text{}>\frac{1}{50}.41+\frac{1}{100}.50=\frac{41+25}{50}=\frac{33}{25}>1\)
Vậy: \(B>1\)
c, Ta có: \(C=\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+...+\frac{1}{16}+\frac{1}{17}< \frac{1}{5}+\frac{1}{6}+\left(\frac{1}{7}+...+\frac{1}{7}+\frac{1}{7}\right)=\frac{11}{30}+11.\frac{1}{7}=\frac{407}{210}< \frac{420}{210}=2\)
Vậy: \(C< 2\)
Chúc bạn học tốt!Tick cho mình nhé!
Tích trên có thừa số 1 - 253 = -252 còn các thừa số kia trong tích đều dương. Vậy tích trên âm.
Mà 2/5 dương nên đpcm
(1−13)(1−16)...(1−1253)
=23⋅56⋅...⋅252253=46⋅1012⋅...⋅504506
=1⋅42⋅3⋅2⋅53⋅4⋅...⋅21⋅2422⋅23
=1⋅2⋅3⋅42⋅52⋅...⋅212⋅22⋅23⋅242⋅32⋅42⋅...⋅222⋅23=1⋅243⋅22=2466<25
Cho P=\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{99}{100}\). Chứng tỏ rằng \(\frac{1}{15}< P< \frac{1}{10}\)
\(\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{6}\right)...\left(1-\dfrac{1}{253}\right)\\=\dfrac{2}{3}\cdot\dfrac{5}{6}\cdot...\cdot\dfrac{252}{253}\\ =\dfrac{4}{6}\cdot\dfrac{10}{12}\cdot...\cdot\dfrac{504}{506}\\ =\dfrac{1\cdot4}{2\cdot3}\cdot\dfrac{2\cdot5}{3\cdot4}\cdot...\cdot\dfrac{21\cdot24}{22\cdot23}\\ =\dfrac{1\cdot2\cdot3\cdot4^2\cdot5^2\cdot...\cdot21^2\cdot22\cdot23\cdot24}{2\cdot3^2\cdot4^2\cdot...\cdot22^2\cdot23}\\ =\dfrac{1\cdot24}{3\cdot22}=\dfrac{24}{66}< \dfrac{2}{5}\)
Hay =33