C= 1.3+3.5+5.7+....+23.25
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\dfrac{2}{1.3}-\dfrac{2}{3.5}-\dfrac{2}{5.7}-.....-\dfrac{2}{23.25}-\dfrac{1}{27}\)
A=\(\dfrac{2}{3}-\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+....+\dfrac{2}{23.25}\right)-\dfrac{1}{27}\)
A=\(\dfrac{2}{3}-\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+......+\dfrac{1}{23}-\dfrac{1}{25}\right)-\dfrac{1}{27}\)
A=\(\dfrac{2}{3}-\left(\dfrac{1}{3}-\dfrac{1}{25}\right)-\dfrac{1}{27}\)
A=\(\dfrac{2}{3}-\dfrac{22}{75}-\dfrac{1}{27}\)
A=\(\dfrac{227}{675}\)
(a+\(\dfrac{1}{1.3}\))+(a+\(\dfrac{1}{3.5}\))+(a+\(\dfrac{1}{5.7}\))+..+(a+\(\dfrac{1}{23.25}\))=11.a+(\(\dfrac{1}{3}\)+\(\dfrac{1}{9}\)+\(\dfrac{1}{27}\)+\(\dfrac{1}{81}\)+\(\dfrac{1}{243}\))
(a+a+..+a)+(\(\dfrac{1}{1.3}\)+\(\dfrac{1}{3.5}\)+\(\dfrac{1}{5.7}\)+...+\(\dfrac{1}{23.25}\)) = 11.a+ \(\dfrac{1}{3}\)+\(\dfrac{1}{9}\)+\(\dfrac{1}{27}\)+\(\dfrac{1}{81}\)+\(\dfrac{1}{243}\))
Đặt A =(a+a+..+a) + \(\dfrac{1}{1.3}\)+\(\dfrac{1}{3.5}\)+\(\dfrac{1}{5.7}\)+...+\(\dfrac{1}{23.25}\)
Xét dãy số 1; 3; 5;...;25 Dãy số trên là dãy số cách đều với khoảng cách là: 3-1 = 2
Dãy số trên có số số hạng là: (25 - 1): 2 + 1 = 13
Vậy A = a\(\times\)13 + \(\dfrac{1}{1.3}\)+\(\dfrac{1}{3.5}\)+\(\dfrac{1}{5.7}\)+...+\(\dfrac{1}{23.25}\)
A = a\(\times\)13 + \(\dfrac{1}{2}\) \(\times\)(\(\dfrac{2}{1.3}\)+\(\dfrac{2}{3.5}\)+\(\dfrac{2}{5.7}\)+...+\(\dfrac{2}{23.25}\))
A = a \(\times\) 13 + \(\dfrac{1}{2}\times\)( \(\dfrac{1}{1}-\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)- \(\dfrac{1}{7}\)+...+\(\dfrac{1}{23}\) - \(\dfrac{1}{25}\))
A = a\(\times\)13 + \(\dfrac{1}{2}\) \(\times\) \(\dfrac{24}{25}\)
A = a\(\times\)13 + \(\dfrac{12}{25}\) (1)
Đặt B = \(\dfrac{1}{3}\) + \(\dfrac{1}{9}\)+ \(\dfrac{1}{27}\)+\(\dfrac{1}{81}\)+\(\dfrac{1}{243}\)
B\(\times\)3 =1 + \(\dfrac{1}{3}\)+\(\dfrac{1}{9}\)+\(\dfrac{1}{27}\)+\(\dfrac{1}{81}\)
B\(\times\)3 - B = 1 - \(\dfrac{1}{243}\) = \(\dfrac{242}{243}\)
2B = \(\dfrac{242}{243}\)
B = \(\dfrac{242}{243}\): 2
B = \(\dfrac{121}{243}\)
11a + B = 11a + \(\dfrac{121}{243}\) (2)
Từ (1) và(2) ta có:
a\(\times\)13 + \(\dfrac{12}{25}\) = 11\(\times\) a + \(\dfrac{121}{143}\)
a \(\times\) 13 + \(\dfrac{12}{25}\) - 11 \(\times\)a = \(\dfrac{121}{143}\)
\(a\times\)(13 - 11) + \(\dfrac{12}{25}\) = \(\dfrac{121}{143}\)
a \(\times\) 2 + \(\dfrac{12}{25}\) = \(\dfrac{121}{243}\)
a \(\times\) 2 = \(\dfrac{121}{243}\) - \(\dfrac{12}{25}\)
a \(\times\) 2 = \(\dfrac{109}{6075}\)
a = \(\dfrac{109}{6075}\): 2
a = \(\dfrac{109}{12150}\)
\(A=-\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{25.27}\right)-\frac{1}{27}\)
\(=-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{25}-\frac{1}{27}\right)-\frac{1}{27}\)
\(=-\left(1-\frac{1}{27}\right)-\frac{1}{27}\)
\(=-1+\frac{1}{27}-\frac{1}{27}\)
\(=-1\)
\(A=-\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{25.27}\right)-\frac{1}{27}\)
\(=-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{25}-\frac{1}{27}\right)-\frac{1}{27}\)
\(=-\left(1-\frac{1}{27}\right)-\frac{1}{27}\)
\(=-1+\frac{1}{27}-\frac{1}{27}\)
\(=-1\)
\(2B=2\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{23}-\frac{1}{25}\right)\)
\(2B=2\left(\frac{1}{3}-\frac{1}{25}\right)\)
\(2B=2\times\frac{22}{75}\)
\(B=\frac{44}{75}\)
bằng 2588
cách làm như thế nào ạ