1 +3+6+10+...+495
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) <=>80-x+6=9.8
<=>86-x=72
<=>x=14
b) <=>495-5x-20=10
<=>475-5x=10
<=>5x=465
<=>x=93
\(\left(2x+1\right)^{10}=49^5\)
\(\left(2x+1\right)^{10}=\left(7^2\right)^5\)
\(\left(2x+1\right)^{10}=7^{10}\)
\(\left(2x+1\right)^{10}=7^{10}\) hoặc \(\left(2x+1\right)^{10}=\left(-7\right)^{10}\)
\(2x+1=7\) hoặc \(2x+1=-7\)
*) \(2x+1=7\)
\(2x=6\)
\(x=3\)
*) \(2x+1=-7\)
\(2x=-8\)
\(x=-4\)
Vậy \(x=-4;x=3\)
(2x +1)10 = 495
(2x+1)10 = (72)5
(2x +1)10 = 710
\(\left[{}\begin{matrix}2x+1=7\\2x+1=-7\end{matrix}\right.\)
\(\left[{}\begin{matrix}2x=6\\2x=-8\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=3\\x=-4\end{matrix}\right.\)
\(\frac{1}{1\times10}+\frac{1}{2\times15}+\frac{1}{3\times20}+...+\frac{1}{98\times495}+\frac{1}{99\times500}\)
\(=\frac{1}{1\times2\times5}+\frac{1}{2\times3\times5}+\frac{1}{3\times4\times5}+...+\frac{1}{98\times99\times5}+\frac{1}{99\times100\times5}\)
\(=\frac{1}{5}\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{98\times99}+\frac{1}{99\times100}\right)\)
\(=\frac{1}{5}\times\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(=\frac{1}{5}\times\left(1-\frac{1}{100}\right)=\frac{1}{5}\times\frac{99}{100}=\frac{99}{500}\)
\(\frac{1}{1\times10}+\frac{1}{2\times15}+\frac{1}{3\times20}+...+\frac{1}{98\times495}+\frac{1}{99\times500}\)
\(=\frac{1}{1\times2\times5}+\frac{1}{2\times3\times5}+\frac{1}{3\times4\times5}+...+\frac{1}{98\times90\times5}+\frac{1}{90\times100\times5}\)
\(=\frac{1}{5}\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{98\times99}+\frac{1}{99\times100}\right)\)
\(=\frac{1}{5}\times\left(\frac{2-1}{1\times2}+\frac{3-2}{2\times3}+...+\frac{99-98}{98\times99}+\frac{100-99}{99\times100}\right)\)
\(=\frac{1}{5}\times\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(=\frac{1}{5}\times\left(1-\frac{1}{100}\right)=\frac{99}{500}\)