Tìm x biết :
a) x+3√x = 0
b)x-3√x=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x-1\right)^2+\left(3-x\right)\left(3+x\right)=0\)
\(\Rightarrow x^2-2x+1+9-x^2=0\)
\(\Rightarrow2x=10\Rightarrow x=5\)
b) \(\left(x-2\right)^2-\left(2x+1\right)^2=0\)
\(\Rightarrow\left(x-2-2x-1\right)\left(x-2+2x+1\right)=0\)
\(\Rightarrow-\left(x+3\right)\left(3x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{3}\end{matrix}\right.\)
a) \(\left(x-1\right)^2+\left(3-x\right)\left(3+x\right)=0\\ \Leftrightarrow x^2-2x+1+9-x^2=0\\ \Leftrightarrow-2x=-10\\ \Leftrightarrow x=5\)
b) \(\left(x-2\right)^2-\left(2x+1\right)^2=0\\ \Leftrightarrow x^2-4x+4-4x^2-4x-1=0\\ \Leftrightarrow-3x^2-8x+3=0\\ \Leftrightarrow3x^2+8x-3=0\\ \Leftrightarrow\left(3x^2+9x\right)-\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(3x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{3}\end{matrix}\right.\)
a)(2x-3)(x+5)=0
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-5\end{matrix}\right.\)
Vậy x=3/2 hoặc x=-5
a) \(\left(2x-3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x+5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-5\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là: \(S=\left\{\dfrac{3}{2};-5\right\}\)
b) \(3x\left(x-2\right)-7\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-7=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{7}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là: \(S=\left\{2;\dfrac{7}{2}\right\}\)
c) \(5x\left(2x-3\right)-6x+9=0\)
\(\Leftrightarrow5x\left(2x-3\right)-3\left(2x-3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(5x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\5x-3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{3}{5}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là: \(S=\left\{\dfrac{3}{2};\dfrac{3}{5}\right\}\)
\(a,\Leftrightarrow\left(x+2\right)\left(x+2-x+3\right)=0\\ \Leftrightarrow5\left(x+2\right)=0\Leftrightarrow x=-2\\ b,\Leftrightarrow2x\left(x-1\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\\ c,\Leftrightarrow\left(x-1-2x-1\right)\left(x-1+2x+1\right)=0\\ \Leftrightarrow3x\left(-x-2\right)=0\Leftrightarrow-3x\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
a
\(x^2\left(2x+15\right)+4\left(2x+15\right)=0\\ \Leftrightarrow\left(2x+15\right)\left(x^2+4\right)=0\\ \Leftrightarrow2x+15=0\left(x^2+4>0\forall x\right)\\ \Leftrightarrow2x=-15\\ \Leftrightarrow x=-\dfrac{15}{2}\)
b
\(5x\left(x-2\right)-3\left(x-2\right)=0\\ \Leftrightarrow\left(x-2\right)\left(5x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\5x-3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0+2=2\\x=\dfrac{0+3}{5}=\dfrac{3}{5}\end{matrix}\right.\)
c
\(2\left(x+3\right)-x^2-3x=0\\ \Leftrightarrow2\left(x+3\right)-\left(x^2+3x\right)=0\\ \Leftrightarrow2\left(x+3\right)-x\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(2-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\2-x=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0-3=-3\\x=2-0=2\end{matrix}\right.\)
a: =>(2x+15)(x^2+4)=0
=>2x+15=0
=>2x=-15
=>x=-15/2
b; =>(x-2)(5x-3)=0
=>x=2 hoặc x=3/5
c: =>(x+3)(2-x)=0
=>x=2 hoặc x=-3
a) \(\Leftrightarrow x^2-4x-x^2+6x-9=0\\ \Leftrightarrow2x=9\\ \Leftrightarrow x=4,5\)
b) \(\Leftrightarrow x^2-3x-10=0\\ \Leftrightarrow\left(x^2+2x\right)-\left(5x+10\right)=0\\ \Leftrightarrow x\left(x+2\right)-5\left(x+2\right)=0\\ \left(x-5\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
c) \(\Leftrightarrow\left(2x-3-7\right)\left(2x-3+7\right)=0\\ \Leftrightarrow\left(2x-10\right)\left(2x+4\right)=0\\ \Leftrightarrow\left(x-5\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
d) \(\Leftrightarrow\left(2x+7\right)\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=5\end{matrix}\right.\)
\(a,\dfrac{-5}{x-3}< 0\Leftrightarrow x-3>0\left(-5< 0\right)\Leftrightarrow x>3\\ b,\dfrac{3-x}{x^2+1}\ge0\Leftrightarrow3-x\ge0\left(x^2+1>0\right)\Leftrightarrow x\le3\\ c,\dfrac{\left(x-1\right)^2}{x-2}< 0\Leftrightarrow x-2< 0\left[\left(x-1\right)^2\ge0\right]\Leftrightarrow x< 2\)
a) (x-4)(x+4)-x(x+2)=0
x2-16-x2-2x = 0
-16 - 2x = 0
2x = -16
x = -16/2
x = -8
b) 3x(x-2)-x+2=0
(3x-1)(x-2)=0
=> x ∈ {1/3 ; 2 }
c) 6x - 12x2 = 0
6x(1-2x) = 0
=> x ∈ {0; 1/2 }
d) mình thấy có vẻ hơi sai đề nên mình ko giải được, bạn thông cảm nha
\(a,\Leftrightarrow\left(x-4\right)\left(x^2+5\right)>0\\ \Leftrightarrow x-4>0\left(x^2+5\ge5>0\right)\\ \Leftrightarrow x>4\\ b,\Leftrightarrow\left(x-y\right)\left(3x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=y\left(vô.lí.do.x\ne y\right)\\x=\dfrac{5}{3}\left(tm\right)\end{matrix}\right.\\ \Leftrightarrow S=x^2-x=\dfrac{25}{9}-\dfrac{5}{3}=\dfrac{10}{9}\)
a.\(x+3\sqrt{x}=0\)
\(ĐK:x\ge0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}+3\right)=0\)
\(\Leftrightarrow x=0\) ( vì \(\sqrt{x}+3\ge3>0\) )
b.\(x-3\sqrt{x}=0\)
\(ĐK:x\ge0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\)