K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2023

\(\overline{abcd}⋮9\)  (d là số nguyên tố)

\(\Rightarrow d\in\left\{3;5;7\right\}\)

mà \(\overline{abcd}\) là số chính phương

\(\Rightarrow d\in\left\{5\right\}\Rightarrow c\in\left\{2\right\}\)

\(\Rightarrow\overline{ab}\in\left\{12;20;30;56;72\right\}\)

mà \(\left\{{}\begin{matrix}a+b+c+d⋮9\\c+d=2+5=7\end{matrix}\right.\)

\(\Rightarrow\overline{ab}\in\left\{20;56\right\}\)

\(\Rightarrow\overline{abcd}\in\left\{2025;5625\right\}\)

14 tháng 3 2019

sai đề rồi bạn ơi

14 tháng 3 2019

mình nhầm xin lỗi bạn

28 tháng 4 2018

\(a,\)Số cần tìm là :

   \(1:\frac{41}{20}=\frac{20}{41}\)

Vậy.................

b,Ta có :abcd \(⋮9\)và a+b+c+d chia hết cho 9

\(\Rightarrow1000a+100b+10c+d⋮9\)

\(\Rightarrow999a+99b+9c+d+a+b+c⋮9\)

\(=9\left(111a+11b+c\right)+a+b+c+d⋮9\)

15 tháng 3 2016

a = 2

b = 0

c = 2

d = 5

AH
Akai Haruma
Giáo viên
22 tháng 7 2021

Lời giải:
a. Vì $p$ nguyên tố lớn hơn $3$ nên $p$ không chia hết cho $3$.

Nếu $p$ chia $3$ dư $2$, $p$ có dạng $p=3k+2$. 

$p+4=3k+6\vdots 3$. Mà $p+4>3$ nên không là số nguyên tố (trái đề)

Do đó $p$ chia $3$ dư $1$

Khi đó: $p+8=3k+1+8=3(k+3)$ chia hết cho $3$. Mà $p+8>3$ nên $p+8$ là hợp số (đpcm)

b.

$\overline{abcd}=1000a+100b+10c+d$

$=1000a+96b+8c+(d+2c+4b)$

$=8(125a+12b+c)+(d+2c+4b)$

Vì $8(125a+12b+c)\vdots 8; d+2c+4b\vdots 8$

$\Rightarrow \overline{abcd}\vdots 8$

Ta có đpcm.