tìm x,y (cả cách làm hộ nha cần gấp lắm)
\(\left(x+2016\right)^{48}+\left(y-2014\right)^{50}=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-\frac{1}{5}\right)^{2014}+\left(y+0,4\right)^{2016}+\left(z-3\right)^{2018}=0\)
Ta thấy: \(\begin{cases}\left(x-\frac{1}{5}\right)^{2014}\ge0\\\left(y+0,4\right)^{2016}\ge0\\\left(z-3\right)^{2018}\ge0\end{cases}\)
\(\Rightarrow\left(x-\frac{1}{5}\right)^{2014}+\left(y+0,4\right)^{2016}+\left(z-3\right)^{2018}\ge0\)
\(\Rightarrow\begin{cases}\left(x-\frac{1}{5}\right)^{2014}=0\\\left(y+0,4\right)^{2016}=0\\\left(z-3\right)^{2018}=0\end{cases}\)\(\Rightarrow\begin{cases}x-\frac{1}{5}=0\\y+0,4=0\\z-3=0\end{cases}\)\(\Rightarrow\begin{cases}x=\frac{1}{5}\\y=-0,4\\z=3\end{cases}\)
Mik đoán đại thôi sai cũng đừng trách mik nha:
x = 2014
y = 2016
\(P=\left(1+x\right)\left(1+\frac{1}{y}\right)+\left(1+y\right)\left(1+\frac{1}{x}\right)\) Nhân bung ra ghép cặp ,dùng cosy
\(P=1+\frac{1}{y}+x+\frac{x}{y}+1+\frac{1}{x}+y+\frac{y}{x}\)
\(P=2+\left(\frac{1}{y}+\frac{1}{x}\right)+\left(x+y\right)+\left(\frac{x}{y}+\frac{y}{x}\right)\ge2+2\sqrt{\frac{1}{xy}}+2\sqrt{xy}+2\sqrt{\frac{xy}{ỹx}}.\) \(P=4+2\left(\sqrt{\frac{1}{xy}}\sqrt{xy}\right)\ge4+4\sqrt{\frac{xy}{xy}}=8.\). Dấu bằng trong các bất đẳng thức trên xẩy ra khi x = y , vì x2 + y2 = 1 và x , y dương nên : \(x=y=\frac{\sqrt{2}}{2}\) Khi đó P đạt giá trị nhỏ nhất Pmin = 8
Đính chính : Dòng thứ 4 từ trên xuông trong bài giải, viết đúng là \(P=4+2\left(\sqrt{xy}+\sqrt{\frac{1}{xy}}\right)\)
\(1)\)
\(VT=\left(\left|x-6\right|+\left|2022-x\right|\right)+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\)
\(\ge\left|x-6+2022-x\right|+\left|0\right|+\left|0\right|+\left|0\right|=2016\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-6\right)\left(2022-x\right)\ge0\left(1\right)\\x-10=y-2014=z-2015=0\left(2\right)\end{cases}}\)
\(\left(2\right)\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=10\\y=2014\\z=2015\end{cases}}\)
\(\left(1\right)\)
TH1 : \(\hept{\begin{cases}x-6\ge0\\2022-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge6\\x\le2022\end{cases}\Leftrightarrow}6\le x\le2022}\) ( nhận )
TH2 : \(\hept{\begin{cases}x-6\le0\\2022-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le6\\x\ge2022\end{cases}}}\) ( loại )
Vậy \(x=10\)\(;\)\(y=2014\) và \(z=2015\)
\(2)\)
\(VT=\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=\left|-4\right|=4\)
\(VP=\frac{12}{\left|y+1\right|+3}\le\frac{12}{3}=4\)
\(\Rightarrow\)\(VT\ge VP\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-5\right)\left(1-x\right)\ge0\left(1\right)\\\left|y+1\right|=0\left(2\right)\end{cases}}\)
\(\left(1\right)\)
TH1 : \(\hept{\begin{cases}x-5\ge0\\1-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge5\\x\le1\end{cases}}}\) ( loại )
TH2 : \(\hept{\begin{cases}x-5\le0\\1-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le5\\x\ge1\end{cases}\Leftrightarrow}1\le x\le5}\) ( nhận )
\(\left(2\right)\)\(\Leftrightarrow\)\(y=-1\)
Vậy \(1\le x\le5\) và \(y=-1\)
MINF=-111
MING=18/25
để ý các đẳng thức có dấu gttđ luôn > 0 thôi
Ta có:
\(\hept{\begin{cases}\left(x+2016\right)^{48}\ge0\\\left(y-2014\right)^{50}\ge0\end{cases}}\Rightarrow\left(x+2016\right)^{48}+\left(y-2014\right)^{50}\ge0\)
Mà theo đầu bài:
\(\left(x+2016\right)^{48}+\left(y-2014\right)^{50}=0\)
\(\Rightarrow\hept{\begin{cases}\left(x+2016\right)^{48}=0\\\left(y-2014\right)^{50}=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2016\\y=2014\end{cases}}}\)
do (x+2016)48 và (y-2014)50 đều lớn hơn hoặc bằng 0 mà (x+2016)48+(y-2014)50=0 nên suy ra (x+2016)48=(y-2014)50=0
=>x=-2016, y=2014